BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25965099)

  • 1. Heterogeneities in Cholesterol-Containing Model Membranes Observed by Pulsed Electron Paramagnetic Resonance of Spin Labels.
    Kardash ME; Isaev NP; Dzuba SA
    J Phys Chem B; 2015 Oct; 119(43):13675-9. PubMed ID: 25965099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Orientational self-ordering of spin-labeled cholesterol analogs in lipid bilayers in diluted conditions.
    Kardash ME; Dzuba SA
    J Chem Phys; 2014 Dec; 141(21):211101. PubMed ID: 25481121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.
    Kardash ME; Dzuba SA
    J Phys Chem B; 2017 May; 121(20):5209-5217. PubMed ID: 28467087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering of spin-labeled cholesterol analog diluted in bilayers of saturated and unsaturated phospholipids.
    Dzuba SA; Kardash ME
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2527-2531. PubMed ID: 30273579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Electron-Electron Resonance of Spin-Labeled Cholestane in Model Membranes: Evidence for Substructures inside the Lipid Rafts.
    Unguryan VV; Golysheva EA; Dzuba SA
    J Phys Chem B; 2021 Aug; 125(33):9557-9563. PubMed ID: 34387998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature dynamical and structural properties of saturated and monounsaturated phospholipid bilayers revealed by Raman and spin-label EPR spectroscopy.
    Surovtsev NV; Ivanisenko NV; Kirillov KY; Dzuba SA
    J Phys Chem B; 2012 Jul; 116(28):8139-44. PubMed ID: 22721271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electron paramagnetic resonance method for measuring the affinity of a spin-labeled analog of cholesterol for phospholipids.
    Williams JA; Wassall CD; Kemple MD; Wassall SR
    J Membr Biol; 2013 Sep; 246(9):689-96. PubMed ID: 23982160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature molecular motions in lipid bilayers in the presence of sugars: insights into cryoprotective mechanisms.
    Konov KB; Isaev NP; Dzuba SA
    J Phys Chem B; 2014 Oct; 118(43):12478-85. PubMed ID: 25296133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-angle orientational motions of spin-labeled lipids in cholesterol-containing bilayers studied at low temperatures by electron spin echo spectroscopy.
    Isaev NP; Syryamina VN; Dzuba SA
    J Phys Chem B; 2010 Jul; 114(29):9510-5. PubMed ID: 20614875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method.
    Suga K; Umakoshi H
    Langmuir; 2013 Apr; 29(15):4830-8. PubMed ID: 23506052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
    Lindblom G; Orädd G; Filippov A
    Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast stochastic librations and slow rotations of spin labeled stearic acids in a model phospholipid bilayer at cryogenic temperatures.
    Isaev NP; Dzuba SA
    J Phys Chem B; 2008 Oct; 112(42):13285-91. PubMed ID: 18826269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures.
    Golysheva EA; Dzuba SA
    Chem Phys Lipids; 2020 Jan; 226():104817. PubMed ID: 31525380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol enhances surface water diffusion of phospholipid bilayers.
    Cheng CY; Olijve LL; Kausik R; Han S
    J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes.
    Raguz M; Mainali L; Widomska J; Subczynski WK
    Biochim Biophys Acta; 2011 Apr; 1808(4):1072-80. PubMed ID: 21192917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions.
    Dols-Perez A; Fumagalli L; Gomila G
    Colloids Surf B Biointerfaces; 2014 Apr; 116():295-302. PubMed ID: 24508809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation.
    Zhang Y; Carter JW; Lervik A; Brooks NJ; Seddon JM; Bresme F
    Soft Matter; 2016 Feb; 12(7):2108-17. PubMed ID: 26758699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.