These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 25965099)
1. Heterogeneities in Cholesterol-Containing Model Membranes Observed by Pulsed Electron Paramagnetic Resonance of Spin Labels. Kardash ME; Isaev NP; Dzuba SA J Phys Chem B; 2015 Oct; 119(43):13675-9. PubMed ID: 25965099 [TBL] [Abstract][Full Text] [Related]
2. Communication: Orientational self-ordering of spin-labeled cholesterol analogs in lipid bilayers in diluted conditions. Kardash ME; Dzuba SA J Chem Phys; 2014 Dec; 141(21):211101. PubMed ID: 25481121 [TBL] [Abstract][Full Text] [Related]
3. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts. Kardash ME; Dzuba SA J Phys Chem B; 2017 May; 121(20):5209-5217. PubMed ID: 28467087 [TBL] [Abstract][Full Text] [Related]
4. Clustering of spin-labeled cholesterol analog diluted in bilayers of saturated and unsaturated phospholipids. Dzuba SA; Kardash ME Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2527-2531. PubMed ID: 30273579 [TBL] [Abstract][Full Text] [Related]
5. Double Electron-Electron Resonance of Spin-Labeled Cholestane in Model Membranes: Evidence for Substructures inside the Lipid Rafts. Unguryan VV; Golysheva EA; Dzuba SA J Phys Chem B; 2021 Aug; 125(33):9557-9563. PubMed ID: 34387998 [TBL] [Abstract][Full Text] [Related]
6. Low-temperature dynamical and structural properties of saturated and monounsaturated phospholipid bilayers revealed by Raman and spin-label EPR spectroscopy. Surovtsev NV; Ivanisenko NV; Kirillov KY; Dzuba SA J Phys Chem B; 2012 Jul; 116(28):8139-44. PubMed ID: 22721271 [TBL] [Abstract][Full Text] [Related]
7. An electron paramagnetic resonance method for measuring the affinity of a spin-labeled analog of cholesterol for phospholipids. Williams JA; Wassall CD; Kemple MD; Wassall SR J Membr Biol; 2013 Sep; 246(9):689-96. PubMed ID: 23982160 [TBL] [Abstract][Full Text] [Related]
8. Low-temperature molecular motions in lipid bilayers in the presence of sugars: insights into cryoprotective mechanisms. Konov KB; Isaev NP; Dzuba SA J Phys Chem B; 2014 Oct; 118(43):12478-85. PubMed ID: 25296133 [TBL] [Abstract][Full Text] [Related]
9. Small-angle orientational motions of spin-labeled lipids in cholesterol-containing bilayers studied at low temperatures by electron spin echo spectroscopy. Isaev NP; Syryamina VN; Dzuba SA J Phys Chem B; 2010 Jul; 114(29):9510-5. PubMed ID: 20614875 [TBL] [Abstract][Full Text] [Related]
10. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers. Park S; Im W J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641 [TBL] [Abstract][Full Text] [Related]
12. Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method. Suga K; Umakoshi H Langmuir; 2013 Apr; 29(15):4830-8. PubMed ID: 23506052 [TBL] [Abstract][Full Text] [Related]
13. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation. Lindblom G; Orädd G; Filippov A Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657 [TBL] [Abstract][Full Text] [Related]
14. Fast stochastic librations and slow rotations of spin labeled stearic acids in a model phospholipid bilayer at cryogenic temperatures. Isaev NP; Dzuba SA J Phys Chem B; 2008 Oct; 112(42):13285-91. PubMed ID: 18826269 [TBL] [Abstract][Full Text] [Related]
15. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Golysheva EA; Dzuba SA Chem Phys Lipids; 2020 Jan; 226():104817. PubMed ID: 31525380 [TBL] [Abstract][Full Text] [Related]
16. Cholesterol enhances surface water diffusion of phospholipid bilayers. Cheng CY; Olijve LL; Kausik R; Han S J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784 [TBL] [Abstract][Full Text] [Related]
17. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Raguz M; Mainali L; Widomska J; Subczynski WK Biochim Biophys Acta; 2011 Apr; 1808(4):1072-80. PubMed ID: 21192917 [TBL] [Abstract][Full Text] [Related]
18. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions. Dols-Perez A; Fumagalli L; Gomila G Colloids Surf B Biointerfaces; 2014 Apr; 116():295-302. PubMed ID: 24508809 [TBL] [Abstract][Full Text] [Related]
19. Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation. Zhang Y; Carter JW; Lervik A; Brooks NJ; Seddon JM; Bresme F Soft Matter; 2016 Feb; 12(7):2108-17. PubMed ID: 26758699 [TBL] [Abstract][Full Text] [Related]
20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]