These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25965147)

  • 1. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.
    Blythe TW; Sederman AJ; Mitchell J; Stitt EH; York AP; Gladden LF
    J Magn Reson; 2015 Jun; 255():122-31. PubMed ID: 25965147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids.
    Blythe TW; Sederman AJ; Stitt EH; York AP; Gladden LF
    J Magn Reson; 2017 Jan; 274():103-114. PubMed ID: 27898299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cumulant analysis for non-Gaussian displacement distributions in Newtonian and non-Newtonian flows through porous media.
    Scheven UM; Crawshaw JP; Anderson VJ; Harris R; Johns ML; Gladden LF
    Magn Reson Imaging; 2007 May; 25(4):513-6. PubMed ID: 17466776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid measurement of flow propagators in porous rocks.
    Mitchell J; Sederman AJ; Fordham EJ; Johns ML; Gladden LF
    J Magn Reson; 2008 Apr; 191(2):267-72. PubMed ID: 18226938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple portable magnetic resonance technique for characterizing circular couette flow of non-Newtonian fluids.
    Selby W; Garland P; Mastikhin I
    J Magn Reson; 2022 Dec; 345():107325. PubMed ID: 36370547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characterisation of fluid transport in porous solids by means of pulsed magnetic field gradient NMR.
    Packer KJ; Stapf S; Tessier JJ; Damion RA
    Magn Reson Imaging; 1998; 16(5-6):463-9. PubMed ID: 9803891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity distributions in a micromixer measured by NMR imaging.
    Ahola S; Telkki VV; Stapf S
    Lab Chip; 2012 Apr; 12(10):1823-30. PubMed ID: 22441171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity distributions remotely measured with a single-sided NMR sensor.
    Casanova F; Perlo J; Blümich B
    J Magn Reson; 2004 Nov; 171(1):124-30. PubMed ID: 15504690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining NMR flow propagator moments in porous rocks without the influence of relaxation.
    Mitchell J; Graf von der Schulenburg DA; Holland DJ; Fordham EJ; Johns ML; Gladden LF
    J Magn Reson; 2008 Aug; 193(2):218-25. PubMed ID: 18514556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheology of blood by NMR.
    Han SI; Marseille O; Gehlen C; Blümich B
    J Magn Reson; 2001 Sep; 152(1):87-94. PubMed ID: 11531367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing.
    Holland DJ; Malioutov DM; Blake A; Sederman AJ; Gladden LF
    J Magn Reson; 2010 Apr; 203(2):236-46. PubMed ID: 20138789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of spatially-resolved displacement propagators using compressed sensing APGSTE-RARE MRI.
    de Kort DW; Reci A; Ramskill NP; Appel M; de Jong H; Mantle MD; Sederman AJ; Gladden LF
    J Magn Reson; 2018 Oct; 295():45-56. PubMed ID: 30096552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity distributions in confined flows of some complex fluids: sequence, sample and hardware issues.
    Chevalier T; Faure PF; Chevalier C; Coussot P; Rodts S
    J Magn Reson; 2014 Aug; 245():156-70. PubMed ID: 24934338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal Analysis of a Non-Newtonian Fluid Flow in a Rough-Walled Pipe.
    Bouchendouka A; Fellah ZEA; Larbi Z; Louna Z; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards online, continuous monitoring for rheometry of complex fluids.
    Rees JM
    Adv Colloid Interface Sci; 2014 Apr; 206():294-302. PubMed ID: 23831130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.