These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25965264)

  • 1. Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras.
    Garcia JE; Girard MB; Kasumovic M; Petersen P; Wilksch PA; Dyer AG
    PLoS One; 2015; 10(5):e0125817. PubMed ID: 25965264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The challenge of objective scar colour assessment in a clinical setting: using digital photography.
    Anderson JC; Hallam MJ; Nduka C; Osorio D
    J Wound Care; 2015 Aug; 24(8):379-87. PubMed ID: 26562381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral Representation vis Data-Guided Sparsity for Hyperspectral Image Super-Resolution
    Han XH; Sun Y; Wang J; Shi B; Zheng Y; Chen YW
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Good Are RGB Cameras Retrieving Colors of Natural Scenes and Paintings?-A Study Based on Hyperspectral Imaging.
    Linhares JMM; Monteiro JAR; Bailão A; Cardeira L; Kondo T; Nakauchi S; Picollo M; Cucci C; Casini A; Stefani L; Nascimento SMC
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33139611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive recovery of smartphone RGB spectral sensitivity functions.
    Ji Y; Kwak Y; Park SM; Kim YL
    Opt Express; 2021 Apr; 29(8):11947-11961. PubMed ID: 33984965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovering fluorescent spectra with an RGB digital camera and color filters using different matrix factorizations.
    Nieves JL; Valero EM; Hernández-Andrés J; Romero J
    Appl Opt; 2007 Jul; 46(19):4144-54. PubMed ID: 17571157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflectance and Fluorescence Spectral Recovery via Actively Lit RGB Images.
    Fu Y; Lam A; Sato I; Okabe T; Sato Y
    IEEE Trans Pattern Anal Mach Intell; 2016 Jul; 38(7):1313-26. PubMed ID: 27295456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive single-pixel hyperspectral imaging using RGB sensors.
    Tao C; Zhu H; Wang X; Zheng S; Xie Q; Wang C; Wu R; Zheng Z
    Opt Express; 2021 Mar; 29(7):11207-11220. PubMed ID: 33820238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging.
    Ma L; Rathgeb A; Mubarak H; Tran M; Fei B
    J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35578386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved method for skin reflectance reconstruction from camera images.
    Xiao K; Zhu Y; Li C; Connah D; Yates JM; Wuerger S
    Opt Express; 2016 Jun; 24(13):14934-50. PubMed ID: 27410644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet vision in anemonefish improves colour discrimination.
    Mitchell LJ; Phelan A; Cortesi F; Marshall NJ; Chung WS; Osorio DC; Cheney KL
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38586934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength encoding spectral imaging based on the combination of deeply learned filters and an RGB camera.
    Xu H; Chen S; Hu H; Luo P; Jin Z; Li Q; Xu Z; Feng H; Chen Y; Jiang T
    Opt Express; 2024 Mar; 32(7):10741-10760. PubMed ID: 38570941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flower colours through the lens: quantitative measurement with visible and ultraviolet digital photography.
    Garcia JE; Greentree AD; Shrestha M; Dorin A; Dyer AG
    PLoS One; 2014; 9(5):e96646. PubMed ID: 24827828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling colour constancy in fish: implications for vision and signalling in water.
    Wilkins L; Marshall NJ; Johnsen S; Osorio D
    J Exp Biol; 2016 Jun; 219(Pt 12):1884-92. PubMed ID: 27045090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmixing Guided Unsupervised Network for RGB Spectral Super-Resolution.
    Qu Q; Pan B; Xu X; Li T; Shi Z
    IEEE Trans Image Process; 2023; 32():4856-4867. PubMed ID: 37527312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pHSCNN: CNN-based hyperspectral recovery from a pair of RGB images.
    Sun Y; Zhang J; Liang R
    Opt Express; 2022 Jul; 30(14):24862-24873. PubMed ID: 36237030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Measurement set-up for estimation of colour discrimination thresholds of colour vision deficiencies and while wearing coloured filters].
    Schürer M; Walter A; Eppig T; Brünner H; Langenbucher A
    Klin Monbl Augenheilkd; 2009 Jul; 226(7):546-54. PubMed ID: 19548186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichromatic red-green-blue camera used for the recovery of albedo and reflectance of rough-textured surfaces under different illumination conditions.
    Plata C; Nieves JL; Valero EM; Romero J
    Appl Opt; 2009 Jul; 48(19):3643-53. PubMed ID: 19571919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Resolution Hyperspectral Imaging System for the Retina.
    Tran MH; Bryarly M; Pruitt K; Ma L; Fei B
    Proc SPIE Int Soc Opt Eng; 2024; 12836():. PubMed ID: 38737572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectra Reconstruction for Human Facial Color from
    Li S; Xiao K; Li P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.