These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25965501)

  • 21. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties.
    Tonoli GH; Teixeira EM; Corrêa AC; Marconcini JM; Caixeta LA; Pereira-da-Silva MA; Mattoso LH
    Carbohydr Polym; 2012 Jun; 89(1):80-8. PubMed ID: 24750607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR.
    Zhou C; Jiang W; Via BK; Fasina O; Han G
    Carbohydr Polym; 2015 May; 121():336-41. PubMed ID: 25659707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.
    Long L; Tian D; Hu J; Wang F; Saddler J
    Bioresour Technol; 2017 Nov; 243():898-904. PubMed ID: 28738544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylation and characterization of xylan from hardwood kraft pulp.
    Fundador NGV; Enomoto-Rogers Y; Takemura A; Iwata T
    Carbohydr Polym; 2012 Jan; 87(1):170-176. PubMed ID: 34662947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Birch wood pre-hydrolysis vs pulp post-hydrolysis for the production of xylan-based compounds and cellulose for viscose application.
    Borrega M; Larsson PT; Ahvenainen P; Ceccherini S; Maloney T; Rautkari L; Sixta H
    Carbohydr Polym; 2018 Jun; 190():212-221. PubMed ID: 29628240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkaline pulping of some eucalypts from Sudan.
    Khristova P; Kordsachia O; Patt R; Dafaalla S
    Bioresour Technol; 2006 Mar; 97(4):535-44. PubMed ID: 15935655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties.
    Przybysz Buzała K; Przybysz P; Kalinowska H; Derkowska M
    PLoS One; 2016; 11(8):e0161575. PubMed ID: 27557079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanofibrillated cellulose from tobacco industry wastes.
    Tuzzin G; Godinho M; Dettmer A; Zattera AJ
    Carbohydr Polym; 2016 Sep; 148():69-77. PubMed ID: 27185117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.
    Van Tran A
    Environ Technol; 2008 Jul; 29(7):775-84. PubMed ID: 18697519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of pulping and washing conditions on the properties of Eucalyptus grandis unbleached kraft pulps treated with chelants.
    Area MC; Carvalho MG; Ferreira PJ; Felissia FE; Barboza OM; Bengoechea DI
    Bioresour Technol; 2010 Mar; 101(6):1877-84. PubMed ID: 19880316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process.
    Castillo Rdel P; Baeza J; Rubilar J; Rivera A; Freer J
    Appl Biochem Biotechnol; 2012 Dec; 168(7):2028-42. PubMed ID: 23070712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of refining on pulp surface charge accessible to polydadmac and FTIR characteristic bands of high yield kraft fibres.
    Bhardwaj NK; Hoang V; Nguyen KL
    Bioresour Technol; 2007 Mar; 98(4):962-6. PubMed ID: 16714107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp.
    Pu Y; Ziemer C; Ragauskas AJ
    Carbohydr Res; 2006 Apr; 341(5):591-7. PubMed ID: 16442511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a Novel Extremophilic Xylanase for an Environmentally Friendly Industrial Bleaching of Kraft Pulps.
    Almeida N; Meyer V; Burnet A; Boucher J; Talens-Perales D; Pereira S; Ihalainen P; Levée T; Polaina J; Petit-Conil M; Camarero S; Pinto P
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.
    Pouyet F; Chirat C; Potthast A; Lachenal D
    Carbohydr Polym; 2014 Aug; 109():85-91. PubMed ID: 24815405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp.
    Ibarra D; Köpcke V; Larsson PT; Jääskeläinen AS; Ek M
    Bioresour Technol; 2010 Oct; 101(19):7416-23. PubMed ID: 20493684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biobleaching of Eucalyptus globulus kraft pulps: comparison between pulps obtained from exploded and non-exploded chips.
    Martín-Sampedro R; Eugenio ME; Villar JC
    Bioresour Technol; 2011 Mar; 102(6):4530-5. PubMed ID: 21256741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp.
    Wan J; Wang Y; Xiao Q
    Bioresour Technol; 2010 Jun; 101(12):4577-83. PubMed ID: 20181478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.