These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25965515)

  • 1. Raman spectroscopic study of phosphogypsum thermal reduction with the carbonaceous material.
    Msila X; Barnard W; Billing DG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():317-22. PubMed ID: 25965515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox chemistry of sulphate and uranium in a phosphogypsum tailings dump.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2010 Aug; 101(8):601-5. PubMed ID: 20359795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.
    Li Y; Dai S; Zhang Y; Huang J; Su Y; Ma B
    J Appl Biomater Funct Mater; 2018 Jan; 16(1_suppl):81-92. PubMed ID: 29618243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.
    Poh HL; Šimek P; Sofer Z; Pumera M
    ACS Nano; 2013 Jun; 7(6):5262-72. PubMed ID: 23656223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis.
    Xu P; Li H; Chen Y
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.
    de Beer M; Maree JP; Liebenberg L; Doucet FJ
    Waste Manag; 2014 Nov; 34(11):2373-81. PubMed ID: 25128917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.
    Pasteris JD; Wopenka B
    Astrobiology; 2003; 3(4):727-38. PubMed ID: 14987478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa.
    Frost RL; Scholz R; López A; Xi Y; Lana C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():24-30. PubMed ID: 24929311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposing properties of phosphogypsum with iron addition under two-step cycle multi-atmosphere control in fluidised bed.
    Zheng D; Ma L; Wang R; Yang J; Dai Q
    Waste Manag Res; 2018 Feb; 36(2):183-193. PubMed ID: 29307272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
    Pomfret MB; Owrutsky JC; Walker RA
    J Phys Chem B; 2006 Sep; 110(35):17305-8. PubMed ID: 16942063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source.
    Azabou S; Mechichi T; Patel BK; Sayadi S
    J Hazard Mater; 2007 Feb; 140(1-2):264-70. PubMed ID: 16979290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of clinkerization temperature by using phosphogypsum.
    Kacimi L; Simon-Masseron A; Ghomari A; Derriche Z
    J Hazard Mater; 2006 Sep; 137(1):129-37. PubMed ID: 16533556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum.
    Pyagai I; Zubkova O; Babykin R; Toropchina M; Fediuk R
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.
    Cárdenas-Escudero C; Morales-Flórez V; Pérez-López R; Santos A; Esquivias L
    J Hazard Mater; 2011 Nov; 196():431-5. PubMed ID: 21982535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc hydroxide sulphate and its transformation to crystalline zinc oxide.
    Moezzi A; Cortie MB; McDonagh AM
    Dalton Trans; 2013 Oct; 42(40):14432-7. PubMed ID: 23963063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts.
    Xu J; Bartholomew CH
    J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphur retention and in-situ preparation of metal sulphide catalysts during activation of petroleum coke.
    Xiao Y; Montes V; Hill JM
    Chemosphere; 2022 Dec; 308(Pt 2):136340. PubMed ID: 36087736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.
    Brotton SJ; Kaiser RI
    J Phys Chem Lett; 2013 Feb; 4(4):669-73. PubMed ID: 26281883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.