These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25965558)

  • 1. 3D Imaging of Twin Domain Defects in Gold Nanoparticles.
    Ulvestad A; Clark JN; Harder R; Robinson IK; Shpyrko OG
    Nano Lett; 2015 Jun; 15(6):4066-70. PubMed ID: 25965558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain.
    Logan J; Harder R; Li L; Haskel D; Chen P; Winarski R; Fuesz P; Schlagel D; Vine D; Benson C; McNulty I
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1210-5. PubMed ID: 27577777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation.
    Carnis J; Kshirsagar AR; Wu L; Dupraz M; Labat S; Texier M; Favre L; Gao L; Oropeza FE; Gazit N; Almog E; Campos A; Micha JS; Hensen EJM; Leake SJ; Schülli TU; Rabkin E; Thomas O; Poloni R; Hofmann JP; Richard MI
    Nat Commun; 2021 Sep; 12(1):5385. PubMed ID: 34508094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunlight-driving formation and characterization of size-controlled gold nanoparticles.
    Luo Y
    J Nanosci Nanotechnol; 2007 Feb; 7(2):708-11. PubMed ID: 17450819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle.
    Kim JW; Ulvestad A; Manna S; Harder R; Fullerton EE; Shpyrko OG
    Nanoscale; 2017 Sep; 9(35):13153-13158. PubMed ID: 28850142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging.
    Ulvestad A; Nashed Y; Beutier G; Verdier M; Hruszkewycz SO; Dupraz M
    Sci Rep; 2017 Aug; 7(1):9920. PubMed ID: 28855571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological synthesis of gold nanocubes from Bacillus licheniformis.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Gurunathan S
    Bioresour Technol; 2009 Nov; 100(21):5356-8. PubMed ID: 19574037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BATTERIES. Topological defect dynamics in operando battery nanoparticles.
    Ulvestad A; Singer A; Clark JN; Cho HM; Kim JW; Harder R; Maser J; Meng YS; Shpyrko OG
    Science; 2015 Jun; 348(6241):1344-7. PubMed ID: 26089511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle contact point density controls microbial adhesion on gold surfaces.
    Dewald C; Lüdecke C; Firkowska-Boden I; Roth M; Bossert J; Jandt KD
    Colloids Surf B Biointerfaces; 2018 Mar; 163():201-208. PubMed ID: 29304434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of silver and gold nanoparticles in ionic liquid.
    Singh P; Kumari K; Katyal A; Kalra R; Chandra R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging of strain in a single ZnO nanorod.
    Newton MC; Leake SJ; Harder R; Robinson IK
    Nat Mater; 2010 Feb; 9(2):120-4. PubMed ID: 20023632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear self-assembly of nanoparticles within liquid crystal defect arrays.
    Coursault D; Grand J; Zappone B; Ayeb H; Lévi G; Félidj N; Lacaze E
    Adv Mater; 2012 Mar; 24(11):1461-5. PubMed ID: 22318807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando 3D imaging of defects dynamics of twinned-nanocrystal during catalysis.
    Meneau F; Rochet A; Harder R; Cha W; Ribeiro Passos A
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33930888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlattices assembled through shape-induced directional binding.
    Lu F; Yager KG; Zhang Y; Xin H; Gang O
    Nat Commun; 2015 Apr; 6():6912. PubMed ID: 25903309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum.
    Aromal SA; Vidhu VK; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):99-104. PubMed ID: 22018585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature.
    Noruzi M; Zare D; Khoshnevisan K; Davoodi D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1461-5. PubMed ID: 21616704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.