These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 25965682)
1. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones. Duryea AP; Roberts WW; Cain CA; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682 [TBL] [Abstract][Full Text] [Related]
2. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. Duryea AP; Roberts WW; Cain CA; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904 [TBL] [Abstract][Full Text] [Related]
3. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound. Duryea AP; Cain CA; Tamaddoni HA; Roberts WW; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1619-26. PubMed ID: 25265172 [TBL] [Abstract][Full Text] [Related]
4. Removal of residual cavitation nuclei to enhance histotripsy fractionation of soft tissue. Duryea AP; Cain CA; Roberts WW; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2068-78. PubMed ID: 26670848 [TBL] [Abstract][Full Text] [Related]
5. Removal of residual nuclei following a cavitation event: a parametric study. Duryea AP; Tamaddoni HA; Cain CA; Roberts WW; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Sep; 62(9):1605-14. PubMed ID: 26719861 [TBL] [Abstract][Full Text] [Related]
6. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study. Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846 [TBL] [Abstract][Full Text] [Related]
7. In vitro comminution of model renal calculi using histotripsy. Duryea AP; Maxwell AD; Roberts WW; Xu Z; Hall TL; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):971-80. PubMed ID: 21622053 [TBL] [Abstract][Full Text] [Related]
8. Effects of pulse repetition frequency on bubble cloud characteristics and ablation in single-cycle histotripsy. Simon A; Edsall C; Maxwell A; Vlaisavljevich E Phys Med Biol; 2024 Jan; 69(2):. PubMed ID: 38041873 [No Abstract] [Full Text] [Related]
9. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment. Vlaisavljevich E; Maxwell A; Mancia L; Johnsen E; Cain C; Xu Z Ultrasound Med Biol; 2016 Oct; 42(10):2466-77. PubMed ID: 27401956 [TBL] [Abstract][Full Text] [Related]
10. Focused Ultrasound and Lithotripsy. Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335 [TBL] [Abstract][Full Text] [Related]
11. Histotripsy erosion of model urinary calculi. Duryea AP; Hall TL; Maxwell AD; Xu Z; Cain CA; Roberts WW J Endourol; 2011 Feb; 25(2):341-4. PubMed ID: 21091223 [TBL] [Abstract][Full Text] [Related]
12. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis. Shi A; Lundt J; Deng Z; Macoskey J; Gurm H; Owens G; Zhang X; Hall TL; Xu Z Ultrasound Med Biol; 2018 Dec; 44(12):2697-2709. PubMed ID: 30279032 [TBL] [Abstract][Full Text] [Related]
13. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy). Xu Z; Hall TL; Fowlkes JB; Cain CA J Acoust Soc Am; 2007 Jul; 122(1):229-36. PubMed ID: 17614482 [TBL] [Abstract][Full Text] [Related]
14. Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy. Edsall C; Huynh L; Hall TL; Vlaisavljevich E Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797649 [TBL] [Abstract][Full Text] [Related]
15. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence. Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629 [TBL] [Abstract][Full Text] [Related]
16. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. Vlaisavljevich E; Maxwell A; Warnez M; Johnsen E; Cain CA; Xu Z IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):341-52. PubMed ID: 24474139 [TBL] [Abstract][Full Text] [Related]
17. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy. Xu Z; Raghavan M; Hall TL; Mycek MA; Fowlkes JB IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1122-32. PubMed ID: 18519220 [TBL] [Abstract][Full Text] [Related]
18. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms. Allen SP; Hernandez-Garcia L; Cain CA; Hall TL Magn Reson Med; 2016 Nov; 76(5):1486-1493. PubMed ID: 26599823 [TBL] [Abstract][Full Text] [Related]
19. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Lundt J; Hall T; Rao A; Fowlkes JB; Cain C; Lee F; Xu Z Phys Med Biol; 2018 Nov; 63(22):225010. PubMed ID: 30418936 [TBL] [Abstract][Full Text] [Related]
20. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy. Xu Z; Raghavan M; Hall TL; Chang CW; Mycek MA; Fowlkes JB; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2091-101. PubMed ID: 18019247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]