These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25965850)

  • 41. Genotype-specific variation in West Nile virus dispersal in California.
    Duggal NK; Reisen WK; Fang Y; Newman RM; Yang X; Ebel GD; Brault AC
    Virology; 2015 Nov; 485():79-85. PubMed ID: 26210076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental studies on comparison of the vector competence of four Italian Culex pipiens populations for West Nile virus.
    Fortuna C; Remoli ME; Di Luca M; Severini F; Toma L; Benedetti E; Bucci P; Montarsi F; Minelli G; Boccolini D; Romi R; Ciufolini MG
    Parasit Vectors; 2015 Sep; 8():463. PubMed ID: 26383834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vector competence of field populations of the mosquito species Aedes japonicus japonicus and Culex pipiens from Switzerland for two West Nile virus strains.
    Wagner S; Mathis A; Schönenberger AC; Becker S; Schmidt-Chanasit J; Silaghi C; Veronesi E
    Med Vet Entomol; 2018 Mar; 32(1):121-124. PubMed ID: 29082585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California.
    Nielsen CF; Armijos MV; Wheeler S; Carpenter TE; Boyce WM; Kelley K; Brown D; Scott TW; Reisen WK
    Am J Trop Med Hyg; 2008 Jan; 78(1):53-62. PubMed ID: 18187785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental Evolution of West Nile Virus at Higher Temperatures Facilitates Broad Adaptation and Increased Genetic Diversity.
    Fay RL; Ngo KA; Kuo L; Willsey GG; Kramer LD; Ciota AT
    Viruses; 2021 Sep; 13(10):. PubMed ID: 34696323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic determinants of differential oral infection phenotypes of West Nile and St. Louis encephalitis viruses in Culex spp. mosquitoes.
    Maharaj PD; Bolling BG; Anishchenko M; Reisen WK; Brault AC
    Am J Trop Med Hyg; 2014 Nov; 91(5):1066-72. PubMed ID: 25157120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains.
    Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD
    J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A positively selected mutation in the WNV 2K peptide confers resistance to superinfection exclusion in vivo.
    Campbell CL; Smith DR; Sanchez-Vargas I; Zhang B; Shi PY; Ebel GD
    Virology; 2014 Sep; 464-465():228-232. PubMed ID: 25104615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States.
    Andreadis TG; Armstrong PM
    J Am Mosq Control Assoc; 2007 Jun; 23(2):137-48. PubMed ID: 17847845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative Vector Competence of North American
    Romo H; Papa A; Kading R; Clark R; Delorey M; Brault AC
    Am J Trop Med Hyg; 2018 Jun; 98(6):1863-1869. PubMed ID: 29637885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature.
    Vogels CB; Fros JJ; Göertz GP; Pijlman GP; Koenraadt CJ
    Parasit Vectors; 2016 Jul; 9(1):393. PubMed ID: 27388451
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolutionary relationships of West Nile virus detected in mosquitoes from a migratory bird zone of Colombian Caribbean.
    López RH; Soto SU; Gallego-Gómez JC
    Virol J; 2015 May; 12():80. PubMed ID: 25989901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental infection of house sparrows (Passer domesticus) with West Nile virus strains of lineages 1 and 2.
    Del Amo J; Llorente F; Pérez-Ramirez E; Soriguer RC; Figuerola J; Nowotny N; Jiménez-Clavero MA
    Vet Microbiol; 2014 Aug; 172(3-4):542-7. PubMed ID: 24984945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retrospective review and current knowledge on the occurrence of West Nile virus in mosquito vectors, reservoirs and hosts in Slovakia (Central Europe).
    Korytár Ľ; Peňazziová K; Pistl J; Tichá E; Čabanová V; Csank T
    Acta Virol; 2020; 64(2):187-200. PubMed ID: 32551787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior.
    Kilpatrick AM; Kramer LD; Jones MJ; Marra PP; Daszak P
    PLoS Biol; 2006 Apr; 4(4):e82. PubMed ID: 16494532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility.
    Brault AC
    Vet Res; 2009; 40(2):43. PubMed ID: 19406093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus.
    Turell MJ; Dohm DJ; Sardelis MR; Oguinn ML; Andreadis TG; Blow JA
    J Med Entomol; 2005 Jan; 42(1):57-62. PubMed ID: 15691009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California?
    Reisen WK; Barker CM; Fang Y; Martinez VM
    J Med Entomol; 2008 Nov; 45(6):1126-38. PubMed ID: 19058638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of corvids in epidemiology of west Nile virus in southern California.
    Reisen WK; Barker CM; Carney R; Lothrop HD; Wheeler SS; Wilson JL; Madon MB; Takahashi R; Carroll B; Garcia S; Fang Y; Shafii M; Kahl N; Ashtari S; Kramer V; Glaser C; Jean C
    J Med Entomol; 2006 Mar; 43(2):356-67. PubMed ID: 16619622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence.
    Maharaj PD; Langevin SA; Bolling BG; Andrade CC; Engle XA; Ramey WN; Bosco-Lauth A; Bowen RA; Sanders TA; Huang CY; Reisen WK; Brault AC
    PLoS Negl Trop Dis; 2019 Jul; 13(7):e0007473. PubMed ID: 31306420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.