These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25965858)

  • 1. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires.
    Deng C; Sansoz F
    Nano Lett; 2009 Apr; 9(4):1517-22. PubMed ID: 19290609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals.
    Zhu T; Li J; Samanta A; Kim HG; Suresh S
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3031-6. PubMed ID: 17360604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
    Bufford D; Liu Y; Wang J; Wang H; Zhang X
    Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation-controlled distributed plasticity in penta-twinned silver nanowires.
    Filleter T; Ryu S; Kang K; Yin J; Bernal RA; Sohn K; Li S; Huang J; Cai W; Espinosa HD
    Small; 2012 Oct; 8(19):2986-93. PubMed ID: 22829327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.
    Qin Q; Yin S; Cheng G; Li X; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2015 Jan; 6():5983. PubMed ID: 25585295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Hall-Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires.
    Wang J; Sansoz F; Deng C; Xu G; Han G; Mao SX
    Nano Lett; 2015 Jun; 15(6):3865-70. PubMed ID: 25950984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Behavior of InP Twinning Superlattice Nanowires.
    Liu Z; Papadimitriou I; Castillo-RodrĂ­guez M; Wang C; Esteban-Manzanares G; Yuan X; Tan HH; Molina-AldareguĂ­a JM; Llorca J
    Nano Lett; 2019 Jul; 19(7):4490-4497. PubMed ID: 31188620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of twin orientation and spacing on the mechanical properties of Cu nanowires.
    Yang Z; Zheng L; Yue Y; Lu Z
    Sci Rep; 2017 Aug; 7(1):10056. PubMed ID: 28855661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices.
    Kim D; Kim SH; Kim JH; Lee JC; Ahn JP; Kim SW
    Sci Rep; 2017 Apr; 7():45903. PubMed ID: 28378763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.
    Lee JH; Holland TB; Mukherjee AK; Zhang X; Wang H
    Sci Rep; 2013; 3():1061. PubMed ID: 23320142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins.
    Wang J; Sansoz F; Huang J; Liu Y; Sun S; Zhang Z; Mao SX
    Nat Commun; 2013; 4():1742. PubMed ID: 23612283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing instability for work hardening in multi-principal element alloys.
    Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X
    Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryoforged nanotwinned titanium with ultrahigh strength and ductility.
    Zhao S; Zhang R; Yu Q; Ell J; Ritchie RO; Minor AM
    Science; 2021 Sep; 373(6561):1363-1368. PubMed ID: 34529490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials.
    Zheng Y; Li Q; Zhang J; Ye H; Zhang H; Shen L
    Nanotechnology; 2017 Oct; 28(41):415705. PubMed ID: 28782728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations.
    Qi X; Chen Z; Yan T; Fichthorn KA
    ACS Nano; 2019 Apr; 13(4):4647-4656. PubMed ID: 30869861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.