These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25965948)

  • 61. Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in ERK-responsive lung cancer.
    Cheng CW; Chen PM; Hsieh YH; Weng CC; Chang CW; Yao CC; Hu LY; Wu PE; Shen CY
    Oncotarget; 2015 Dec; 6(42):44222-38. PubMed ID: 26528854
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications.
    Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F
    Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MDA-MB-231 Breast Cancer Cells and Their CSC Population Migrate Towards Low Oxygen in a Microfluidic Gradient Device.
    Sleeboom JJF; Toonder JMJD; Sahlgren CM
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301222
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.
    Mathieu E; Paul CD; Stahl R; Vanmeerbeeck G; Reumers V; Liu C; Konstantopoulos K; Lagae L
    Lab Chip; 2016 Aug; 16(17):3304-16. PubMed ID: 27436197
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening.
    Skardal A; Devarasetty M; Forsythe S; Atala A; Soker S
    Biotechnol Bioeng; 2016 Sep; 113(9):2020-32. PubMed ID: 26888480
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Behavior of breast cancer cells under oxygen concentration gradients in a microfluidic device.
    Aratake S; Kawahara N; Funamoto K
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083361
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microchannel Stiffness and Confinement Jointly Induce the Mesenchymal-Amoeboid Transition of Cancer Cell Migration.
    Wang M; Cheng B; Yang Y; Liu H; Huang G; Han L; Li F; Xu F
    Nano Lett; 2019 Sep; 19(9):5949-5958. PubMed ID: 31414817
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids.
    Shirure VS; Bi Y; Curtis MB; Lezia A; Goedegebuure MM; Goedegebuure SP; Aft R; Fields RC; George SC
    Lab Chip; 2018 Dec; 18(23):3687-3702. PubMed ID: 30393802
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A hypoxic ticket to the bone metastatic niche.
    Vanharanta S
    Breast Cancer Res; 2015 Sep; 17(1):122. PubMed ID: 26337273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow.
    Calibasi Kocal G; Güven S; Foygel K; Goldman A; Chen P; Sengupta S; Paulmurugan R; Baskin Y; Demirci U
    Sci Rep; 2016 Dec; 6():38221. PubMed ID: 27910892
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High Throughput Confined Migration Microfluidic Device for Drug Screening.
    Yang Z; Zhou Z; Si T; Zhou Z; Zhou L; Chin YR; Zhang L; Guan X; Yang M
    Small; 2023 Apr; 19(16):e2207194. PubMed ID: 36634971
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis.
    Oudin MJ; Weaver VM
    Cold Spring Harb Symp Quant Biol; 2016; 81():189-205. PubMed ID: 28424337
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Content Analysis of Cell Migration Dynamics within a Micropatterned Screening Platform.
    Almeida FV; Gammon L; Laly AC; Pundel OJ; Bishop CL; Connelly JT
    Adv Biosyst; 2019 Aug; 3(8):e1900011. PubMed ID: 32648701
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip.
    Feng S; Mao S; Zhang Q; Li W; Lin JM
    ACS Sens; 2019 Feb; 4(2):521-527. PubMed ID: 30688066
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-Throughput Tumor-on-a-Chip Platform to Study Tumor-Stroma Interactions and Drug Pharmacokinetics.
    Chi CW; Lao YH; Ahmed AHR; Benoy EC; Li C; Dereli-Korkut Z; Fu BM; Leong KW; Wang S
    Adv Healthc Mater; 2020 Nov; 9(21):e2000880. PubMed ID: 32965088
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device.
    Lei KF; Tseng HP; Lee CY; Tsang NM
    Sci Rep; 2016 May; 6():25557. PubMed ID: 27150137
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cell migration in microengineered tumor environments.
    Um E; Oh JM; Granick S; Cho YK
    Lab Chip; 2017 Dec; 17(24):4171-4185. PubMed ID: 28971203
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computational model of the cancer necrotic core formation in a tumor-on-a-chip device.
    Bonifácio ED; Araújo CA; Guimarães MV; de Souza MP; Lima TP; de Avelar Freitas BA; González-Torres LA
    J Theor Biol; 2024 Sep; 592():111893. PubMed ID: 38944380
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Confined Cell Migration and Asymmetric Hydraulic Environments to Evaluate the Metastatic Potential of Cancer Cells.
    Juste-Lanas Y; Guerrero PE; Camacho-Gómez D; Hervás-Raluy S; García-Aznar JM; Gomez-Benito MJ
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 34864878
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.