BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25965973)

  • 1. Cellulose Acetate-Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability.
    Ganesh VA; Ranganath AS; Sridhar R; Raut HK; Jayaraman S; Sahay R; Ramakrishna S; Baji A
    Macromol Rapid Commun; 2015 Jul; 36(14):1368-73. PubMed ID: 25965973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun Poly(N-isopropylacrylamide)/Ethyl Cellulose Nanofibers as Thermoresponsive Drug Delivery Systems.
    Hu J; Li HY; Williams GR; Yang HH; Tao L; Zhu LM
    J Pharm Sci; 2016 Mar; 105(3):1104-12. PubMed ID: 26886332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive Cellulose Acetate-Poly(N-isopropylacrylamide) Core-Shell Fibers for Controlled Capture and Release of Moisture.
    Thakur N; Sargur Ranganath A; Sopiha K; Baji A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29224-29233. PubMed ID: 28795559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release.
    Elashnikov R; Slepička P; Rimpelova S; Ulbrich P; Švorčík V; Lyutakov O
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():293-300. PubMed ID: 28024589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil-Water Separation.
    Ou R; Wei J; Jiang L; Simon GP; Wang H
    Environ Sci Technol; 2016 Jan; 50(2):906-14. PubMed ID: 26704724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP.
    Lindqvist J; Nyström D; Ostmark E; Antoni P; Carlmark A; Johansson M; Hult A; Malmström E
    Biomacromolecules; 2008 Aug; 9(8):2139-45. PubMed ID: 18636775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired design of underwater superoleophobic Poly(N-isopropylacrylamide)/ polyacrylonitrile/TiO
    Sun F; Ren HT; Li TT; Huang SY; Zhang Y; Lou CW; Lin JH
    Environ Res; 2020 Jul; 186():109494. PubMed ID: 32302872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel PNIPAm-based electrospun nanofibres used directly as a drug carrier for "on-off" switchable drug release.
    Wei Z; Zhao W; Wang Y; Wang X; Long S; Yang J
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110347. PubMed ID: 31330429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of PNIPAm(x)-PEO20-PPO70-PEO20-PNIPAm(x) pentablock terpolymer on gold surfaces: effects of concentration, temperature, block length, and surface properties.
    Chen T; Lu Y; Chen T; Zhang X; Du B
    Phys Chem Chem Phys; 2014 Mar; 16(12):5536-44. PubMed ID: 24501744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoresponsive Poly(
    Mendoza DJ; Ayurini M; Browne C; Raghuwanshi VS; Simon GP; Hooper JF; Garnier G
    Biomacromolecules; 2022 Apr; 23(4):1610-1621. PubMed ID: 35041381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels.
    Wu C; Wang X; Zhao L; Gao Y; Ma R; An Y; Shi L
    Langmuir; 2010 Dec; 26(23):18503-7. PubMed ID: 21062000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels.
    Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z
    Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity.
    Frysali MA; Anastasiadis SH
    Langmuir; 2017 Sep; 33(36):9106-9114. PubMed ID: 28793185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient study to reach physiological temperature with poly(N-isopropylacrylamide) in presence of two differently behaving additives.
    Narang P; Venkatesu P
    J Colloid Interface Sci; 2019 Mar; 538():62-74. PubMed ID: 30500468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally tunable surface wettability of electrospun fiber mats: polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)].
    Muthiah P; Hoppe SM; Boyle TJ; Sigmund W
    Macromol Rapid Commun; 2011 Nov; 32(21):1716-21. PubMed ID: 21994211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal-functionality effect of poly(N-isopropylacrylamide) brush surfaces on temperature-controlled cell adhesion/detachment.
    Matsuzaka N; Nakayama M; Takahashi H; Yamato M; Kikuchi A; Okano T
    Biomacromolecules; 2013 Sep; 14(9):3164-71. PubMed ID: 23909471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of lignin nanofibers with ionic-responsive shells: water-expandable lignin-based nanofibrous mats.
    Gao G; Dallmeyer JI; Kadla JF
    Biomacromolecules; 2012 Nov; 13(11):3602-10. PubMed ID: 22988814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.
    Feng Q; Hou D; Zhao Y; Xu T; Menkhaus TJ; Fong H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20958-67. PubMed ID: 25396286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.