BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25966245)

  • 1. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.
    Clemente AC; Guimarães RM; Martins DC; Gomes LA; Caixeta F; Reis RG; Rosa SD
    Genet Mol Res; 2015 May; 14(2):4703-15. PubMed ID: 25966245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes.
    Argyris J; Dahal P; Hayashi E; Still DW; Bradford KJ
    Plant Physiol; 2008 Oct; 148(2):926-47. PubMed ID: 18753282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds.
    Xia Q; Ponnaiah M; Thanikathansubramanian K; Corbineau F; Bailly C; Nambara E; Meimoun P; El-Maarouf-Bouteau H
    Sci Rep; 2019 Mar; 9(1):4861. PubMed ID: 30890715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. phyB and HY5 are Involved in the Blue Light-Mediated Alleviation of Dormancy of
    Stawska M; Oracz K
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1).
    Yoong FY; O'Brien LK; Truco MJ; Huo H; Sideman R; Hayes R; Michelmore RW; Bradford KJ
    Plant Physiol; 2016 Jan; 170(1):472-88. PubMed ID: 26574598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis.
    Yano R; Kanno Y; Jikumaru Y; Nakabayashi K; Kamiya Y; Nambara E
    Plant Physiol; 2009 Oct; 151(2):641-54. PubMed ID: 19648230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds.
    Sawada Y; Aoki M; Nakaminami K; Mitsuhashi W; Tatematsu K; Kushiro T; Koshiba T; Kamiya Y; Inoue Y; Nambara E; Toyomasu T
    Plant Physiol; 2008 Mar; 146(3):1386-96. PubMed ID: 18184730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds.
    Chen SY; Kuo SR; Chien CT
    Tree Physiol; 2008 Sep; 28(9):1431-9. PubMed ID: 18595855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures.
    Schwember AR; Bradford KJ
    Plant Mol Biol; 2010 May; 73(1-2):105-18. PubMed ID: 20047028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds.
    Chen H; Ruan J; Chu P; Fu W; Liang Z; Li Y; Tong J; Xiao L; Liu J; Li C; Huang S
    Plant J; 2020 Jan; 101(2):310-323. PubMed ID: 31536657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance.
    Huo H; Dahal P; Kunusoth K; McCallum CM; Bradford KJ
    Plant Cell; 2013 Mar; 25(3):884-900. PubMed ID: 23503626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ethylene and proteolytic N-degron pathway in the regulation of Arabidopsis seed dormancy.
    Wang X; Gomes MM; Bailly C; Nambara E; Corbineau F
    J Integr Plant Biol; 2021 Dec; 63(12):2110-2122. PubMed ID: 34542217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin.
    Gonai T; Kawahara S; Tougou M; Satoh S; Hashiba T; Hirai N; Kawaide H; Kamiya Y; Yoshioka T
    J Exp Bot; 2004 Jan; 55(394):111-8. PubMed ID: 14676289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae).
    Chen SY; Chien CT; Baskin JM; Baskin CC
    Tree Physiol; 2010 Feb; 30(2):275-84. PubMed ID: 20008838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid.
    An YQ; Lin L
    BMC Plant Biol; 2011 Jun; 11():105. PubMed ID: 21668981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.
    Shu K; Zhang H; Wang S; Chen M; Wu Y; Tang S; Liu C; Feng Y; Cao X; Xie Q
    PLoS Genet; 2013 Jun; 9(6):e1003577. PubMed ID: 23818868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids.
    Pawłowski TA
    BMC Plant Biol; 2009 May; 9():48. PubMed ID: 19413897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications.
    Sami A; Riaz MW; Zhou X; Zhu Z; Zhou K
    BMC Plant Biol; 2019 Dec; 19(1):577. PubMed ID: 31870301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling of hormones and related metabolites in seed dormancy and germination studies.
    Seo M; Jikumaru Y; Kamiya Y
    Methods Mol Biol; 2011; 773():99-111. PubMed ID: 21898252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness.
    Sawada Y; Katsumata T; Kitamura J; Kawaide H; Nakajima M; Asami T; Nakaminami K; Kurahashi T; Mitsuhashi W; Inoue Y; Toyomasu T
    J Exp Bot; 2008; 59(12):3383-93. PubMed ID: 18653696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.