These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

889 related articles for article (PubMed ID: 25966677)

  • 21. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells.
    Mansur AAP; Mansur HS; Leonel AG; Carvalho IC; Lage MCG; Carvalho SM; Krambrock K; Lobato ZIP
    J Mater Chem B; 2020 Aug; 8(32):7166-7188. PubMed ID: 32614035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances of Nanotechnology in the Diagnosis and Therapy of Triple- Negative Breast Cancer (TNBC).
    Kanugo A; Gautam RK; Kamal MA
    Curr Pharm Biotechnol; 2022; 23(13):1581-1595. PubMed ID: 34967294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: prognostic and predictive markers in triple-negative and non-triple-negative breast cancer.
    Bahhnassy A; Mohanad M; Shaarawy S; Ismail MF; El-Bastawisy A; Ashmawy AM; Zekri AR
    Mol Med Rep; 2015 Jul; 12(1):851-64. PubMed ID: 25824321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model.
    Tulotta C; Stefanescu C; Beletkaia E; Bussmann J; Tarbashevich K; Schmidt T; Snaar-Jagalska BE
    Dis Model Mech; 2016 Feb; 9(2):141-53. PubMed ID: 26744352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer.
    Upreti M; Jyoti A; Johnson SE; Swindell EP; Napier D; Sethi P; Chan R; Feddock JM; Weiss HL; O'Halloran TV; Evers BM
    Oncotarget; 2016 Jul; 7(27):41559-41574. PubMed ID: 27223428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery.
    Koning GA; Krijger GC
    Anticancer Agents Med Chem; 2007 Jul; 7(4):425-40. PubMed ID: 17630918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.
    Zhong Y; Zhang J; Cheng R; Deng C; Meng F; Xie F; Zhong Z
    J Control Release; 2015 May; 205():144-54. PubMed ID: 25596560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery.
    Gao N; Bozeman EN; Qian W; Wang L; Chen H; Lipowska M; Staley CA; Wang YA; Mao H; Yang L
    Theranostics; 2017; 7(6):1689-1704. PubMed ID: 28529645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer.
    Cao Y; Meng F; Cai T; Gao L; Lee J; Solomevich SO; Aharodnikau UE; Guo T; Lan M; Liu F; Li Q; Viktor T; Li D; Cai Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1950. PubMed ID: 38528388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer.
    Shahbazi R; Asik E; Kahraman N; Turk M; Ozpolat B; Ulubayram K
    Nanomedicine (Lond); 2017 Aug; 12(16):1961-1973. PubMed ID: 28745127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
    Shu D; Li H; Shu Y; Xiong G; Carson WE; Haque F; Xu R; Guo P
    ACS Nano; 2015 Oct; 9(10):9731-40. PubMed ID: 26387848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment.
    Deng ZJ; Morton SW; Ben-Akiva E; Dreaden EC; Shopsowitz KE; Hammond PT
    ACS Nano; 2013 Nov; 7(11):9571-84. PubMed ID: 24144228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Triple-punch" strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy.
    Su S; Tian Y; Li Y; Ding Y; Ji T; Wu M; Wu Y; Nie G
    ACS Nano; 2015 Feb; 9(2):1367-78. PubMed ID: 25611071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors.
    Agnello L; Tortorella S; d'Argenio A; Carbone C; Camorani S; Locatelli E; Auletta L; Sorrentino D; Fedele M; Zannetti A; Franchini MC; Cerchia L
    J Exp Clin Cancer Res; 2021 Jul; 40(1):239. PubMed ID: 34294133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IgA Fc-folate conjugate activates and recruits neutrophils to directly target triple-negative breast cancer cells.
    Frontera ED; Khansa RM; Schalk DL; Leakan LE; Guerin-Edbauer TJ; Ratnam M; Gorski DH; Speyer CL
    Breast Cancer Res Treat; 2018 Dec; 172(3):551-560. PubMed ID: 30155754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Receptor-based targeting of therapeutics.
    Mehra NK; Mishra V; Jain NK
    Ther Deliv; 2013 Mar; 4(3):369-94. PubMed ID: 23442082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy.
    Blaya-Cánovas JL; Griñán-Lisón C; Blancas I; Marchal JA; Ramírez-Tortosa C; López-Tejada A; Benabdellah K; Cortijo-Gutiérrez M; Cano-Cortés MV; Graván P; Navarro-Marchal SA; Gómez-Morales J; Delgado-Almenta V; Calahorra J; Agudo-Lera M; Sagarzazu A; Rodríguez-González CJ; Gallart-Aragón T; Eich C; Sánchez-Martín RM; Granados-Principal S
    Mol Cancer; 2024 May; 23(1):83. PubMed ID: 38730475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer.
    Skandalis SS; Gialeli C; Theocharis AD; Karamanos NK
    Adv Cancer Res; 2014; 123():277-317. PubMed ID: 25081534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of Copper Nanoclusters for Accurate in Vivo Tumor Imaging and Potential for Translation.
    Heo GS; Zhao Y; Sultan D; Zhang X; Detering L; Luehmann HP; Zhang X; Li R; Choksi A; Sharp S; Levingston S; Primeau T; Reichert DE; Sun G; Razani B; Li S; Weilbaecher KN; Dehdashti F; Wooley KL; Liu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):19669-19678. PubMed ID: 31074257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triple negative breast cancer: looking for the missing link between biology and treatments.
    Palma G; Frasci G; Chirico A; Esposito E; Siani C; Saturnino C; Arra C; Ciliberto G; Giordano A; D'Aiuto M
    Oncotarget; 2015 Sep; 6(29):26560-74. PubMed ID: 26387133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.