These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25966875)

  • 1. Label-free capacitance-based identification of viruses.
    Al Ahmad M; Mustafa F; Ali LM; Karakkat JV; Rizvi TA
    Sci Rep; 2015 May; 5():9809. PubMed ID: 25966875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virus detection and quantification using electrical parameters.
    Al Ahmad M; Mustafa F; Ali LM; Rizvi TA
    Sci Rep; 2014 Oct; 4():6831. PubMed ID: 25355078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrical properties of viruses studied by AC capacitance scanning probe microscopy.
    MacCuspie RI; Nuraje N; Lee SY; Runge A; Matsui H
    J Am Chem Soc; 2008 Jan; 130(3):887-91. PubMed ID: 18092777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitance-based assay for real-time monitoring of endocytosis and cell viability.
    Lee R; Kim J; Kim SY; Jang SM; Lee SM; Choi IH; Park SW; Shin JS; Yoo KH
    Lab Chip; 2012 Jul; 12(13):2377-84. PubMed ID: 22522711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical detection and quantification of single and mixed DNA nucleotides in suspension.
    Ahmad MA; Panicker NG; Rizvi TA; Mustafa F
    Sci Rep; 2016 Sep; 6():34016. PubMed ID: 27677329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and label-free monitoring of nanoparticle cellular uptake using capacitance-based assays.
    Lee R; Jo DH; Chung SJ; Na HK; Kim JH; Lee TG
    Sci Rep; 2016 Sep; 6():33668. PubMed ID: 27641838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micro-scale multi-frequency reactance measurement technique to detect bacterial growth at low bio-particle concentrations.
    Sengupta S; Battigelli DA; Chang HC
    Lab Chip; 2006 May; 6(5):682-92. PubMed ID: 16652185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.
    Gomila G; Esteban-Ferrer D; Fumagalli L
    Nanotechnology; 2013 Dec; 24(50):505713. PubMed ID: 24284953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2.
    González G; Kolosovas-Machuca ES; López-Luna E; Hernández-Arriaga H; González FJ
    Sensors (Basel); 2015 Jan; 15(1):1998-2005. PubMed ID: 25602271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-calibrating highly sensitive dynamic capacitance sensor: towards rapid sensing and counting of particles in laminar flow systems.
    Guha S; Schmalz K; Wenger Ch; Herzel F
    Analyst; 2015 May; 140(9):3262-72. PubMed ID: 25793229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces.
    Fumagalli L; Esteban-Ferrer D; Cuervo A; Carrascosa JL; Gomila G
    Nat Mater; 2012 Sep; 11(9):808-16. PubMed ID: 22772654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing.
    Zucolotto V; Daghastanli KR; Hayasaka CO; Riul A; Ciancaglini P; Oliveira ON
    Anal Chem; 2007 Mar; 79(5):2163-7. PubMed ID: 17263514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy.
    Cannizzaro C; Gügerli R; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Dec; 84(5):597-610. PubMed ID: 14574694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities.
    Zhu J; Özdemir ŞK; He L; Chen DR; Yang L
    Opt Express; 2011 Aug; 19(17):16195-206. PubMed ID: 21934982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform.
    Chung J; Kang JS; Jurng JS; Jung JH; Kim BC
    Biosens Bioelectron; 2015 May; 67():303-8. PubMed ID: 25190089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultured autologous keratinocytes in suspension accelerate epithelial maturation in an in vivo wound model as measured by surface electrical capacitance.
    Magnusson M; Papini RP; Rea SM; Reed CC; Wood FM
    Plast Reconstr Surg; 2007 Feb; 119(2):495-9. PubMed ID: 17230081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation.
    Yang L; Li Y
    J Microbiol Methods; 2006 Jan; 64(1):9-16. PubMed ID: 15936099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor capacitance: electrical measurements of renal neoplasia.
    Inagaki T; Bhayani SB; Allaf ME; Ong AM; Rha KH; Petresior D; Patriciu A; Varkarakis IM; Jarrett TW; Stoianovici D; Kavoussi LR
    J Urol; 2004 Aug; 172(2):454-7. PubMed ID: 15247701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring biofilm thickness using a non-destructive, on-line, electrical capacitance technique.
    Maurício R; Dias CJ; Santana F
    Environ Monit Assess; 2006 Aug; 119(1-3):599-607. PubMed ID: 16741809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.