BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25966936)

  • 1. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia.
    Cui H; Hense BA; Müller J; Schröder P
    Chemosphere; 2015 Sep; 134():307-12. PubMed ID: 25966936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Zhang W; Yu L; Liu C; Jones KW; Tappero R
    J Environ Sci (China); 2016 Mar; 41():172-182. PubMed ID: 26969063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia.
    Cui H; Schröder P
    J Hazard Mater; 2016 May; 308():355-61. PubMed ID: 26852211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of selenium using subsurface-flow constructed wetland.
    Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H
    Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud).
    Xu S; Leri AC; Myneni SC; Jaffe PR
    Environ Sci Technol; 2004 Nov; 38(21):5642-8. PubMed ID: 15575283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of mercury-polluted soils using artificial wetlands.
    García-Mercadoa HD; Fernándezb G; Garzón-Zúñigac MA; Durán-Domínguez-de-Bazúaa MD
    Int J Phytoremediation; 2017 Jan; 19(1):3-13. PubMed ID: 27484186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia.
    Alquwaizany AS; Hussain G; Al-Zarah AI
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39838-39846. PubMed ID: 35112245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phosphorus rhizosphere depletion effect of four aquatic plants].
    Wang ZY; Wen SF; Xing BS; Gao DM; Li FM; Hu HY; Sakoda A; Sagehashi M
    Huan Jing Ke Xue; 2008 Sep; 29(9):2475-80. PubMed ID: 19068629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants].
    Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM
    Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
    Ranieri E; Fratino U; Petrella A; Torretta V; Rada EC
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15983-9. PubMed ID: 27146531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A Contrastive Study on Salt-alkaline Resistance and Removal Efficiency of Nitrogen and Phosphorus by Phragmites australis and Typha angustifolia in Coastal Estuary Area].
    Chen YY; Sun P; Chen GL; Wang NN
    Huan Jing Ke Xue; 2015 Apr; 36(4):1489-96. PubMed ID: 26164931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes.
    Rodriguez-Hernandez MC; García De la-Cruz RF; Leyva E; Navarro-Tovar G
    Chemosphere; 2017 Apr; 173():190-198. PubMed ID: 28110008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of micropollutants by
    Lei Y; Carlucci L; Rijnaarts H; Langenhoff A
    Int J Phytoremediation; 2023; 25(1):82-88. PubMed ID: 35414315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of exogenous iron on lead accumulation in Typha latifolia from a lead-contaminated soil].
    Zhong SQ; Xu JM
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):78-82. PubMed ID: 23717993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.