BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 25967037)

  • 1. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum.
    Zhang B; Jiang CY; Liu YM; Liu C; Liu SJ
    Biotechnol Lett; 2015 Sep; 37(9):1861-8. PubMed ID: 25967037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production.
    Zhang B; Liu ZQ; Liu C; Zheng YG
    Biotechnol Lett; 2016 Dec; 38(12):2153-2161. PubMed ID: 27623797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum.
    Zhang B; Zhou N; Liu YM; Liu C; Lou CB; Jiang CY; Liu SJ
    Microb Cell Fact; 2015 May; 14():71. PubMed ID: 25981633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shikimate Metabolic Pathway Engineering in
    Park E; Kim HJ; Seo SY; Lee HN; Choi SS; Lee SJ; Kim ES
    J Microbiol Biotechnol; 2021 Sep; 31(9):1305-1310. PubMed ID: 34373439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine.
    Han G; Hu X; Qin T; Li Y; Wang X
    Enzyme Microb Technol; 2016 Feb; 83():14-21. PubMed ID: 26777246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum.
    Niimi S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1721-9. PubMed ID: 21424269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
    Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.