These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25967163)

  • 1. Analytical approach of ordinary frozen waves for optical trapping and micromanipulation.
    Ambrosio LA; Zamboni-Rached M
    Appl Opt; 2015 Apr; 54(10):2584-93. PubMed ID: 25967163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2011 Jul; 2(7):1893-906. PubMed ID: 21750767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal, and radial polarizations.
    Ambrosio LA; Rached MZ; Gouesbet G
    Appl Opt; 2018 Apr; 57(12):3293-3300. PubMed ID: 29714319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2010 Nov; 1(5):1284-1301. PubMed ID: 21258549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical force on a large sphere illuminated by Bessel beams: comparisons between ray optics method and generalized Lorenz-Mie theory.
    Song S; Wang N; Lu W; Lin Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2192-7. PubMed ID: 25401244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward scattering of a Gaussian beam by a nonabsorbing sphere.
    Hodges JT; Gréhan G; Gouesbet G; Presser C
    Appl Opt; 1995 Apr; 34(12):2120-32. PubMed ID: 21037758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Costa ET
    Ultrasonics; 2014 Aug; 54(6):1620-30. PubMed ID: 24709072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Producing acoustic frozen waves: simulated experiments.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2414-25. PubMed ID: 24158296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves.
    Zamboni-Rached M
    Opt Express; 2004 Aug; 12(17):4001-6. PubMed ID: 19483938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of nondiffracting Bessel beam using digital micromirror device.
    Gong L; Ren YX; Xue GS; Wang QC; Zhou JH; Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2013 Jul; 52(19):4566-75. PubMed ID: 23842252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of "frozen waves": modeling the shape of stationary wave fields.
    Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2465-75. PubMed ID: 16302397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental optical trapping with frozen waves.
    Suarez RAB; Ambrosio LA; Neves AAR; Zamboni-Rached M; Gesualdi MRR
    Opt Lett; 2020 May; 45(9):2514-2517. PubMed ID: 32356804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces.
    Ambrosio LA; Wang J; Gouesbet G
    Appl Opt; 2017 Jul; 56(19):5377-5387. PubMed ID: 29047494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of dynamic frozen waves: controlling shape, location (and speed) of diffraction-resistant beams.
    Vieira TA; Gesualdi MR; Zamboni-Rached M; Recami E
    Opt Lett; 2015 Dec; 40(24):5834-7. PubMed ID: 26670524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigorous justification of a localized approximation to encode on-axis Gaussian acoustical waves.
    Gouesbet G; Ambrosio LA
    J Acoust Soc Am; 2023 Aug; 154(2):1062-1072. PubMed ID: 37606358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description and reconstruction of typical structured light beams with vector spherical wave functions.
    Shi Y; Cui Z; Liu Z; Ren S; Wu F
    Appl Opt; 2024 Mar; 63(9):2392-2403. PubMed ID: 38568595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal, strong and long-ranged trapping by optical conveyors.
    Ruffner DB; Grier DG
    Opt Express; 2014 Nov; 22(22):26834-43. PubMed ID: 25401830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):181-93. PubMed ID: 18244116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical pulling force on a uniaxial anisotropic sphere by a high-order Bessel (vortex) beam.
    Li ZJ
    Appl Opt; 2024 Apr; 63(10):A59-A69. PubMed ID: 38568512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.
    Ambrosio LA; Hernández-Figueroa HE
    Appl Opt; 2011 Aug; 50(22):4489-98. PubMed ID: 21833125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.