These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25967204)

  • 1. Small displacement measurements based on an angular-deviation amplifier and interferometric phase detection.
    Chiu MH; Chen WC; Tan CT
    Appl Opt; 2015 Apr; 54(10):2885-90. PubMed ID: 25967204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.
    Zhu Z; Liu L; Liu Z; Zhang Y; Zhang Y
    Opt Lett; 2017 May; 42(10):1982-1985. PubMed ID: 28504729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.
    Wang SF
    Sensors (Basel); 2009; 9(4):2498-510. PubMed ID: 22574028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White-light spectral interferometry for surface plasmon resonance sensing applications.
    Ng SP; Wu CM; Wu SY; Ho HP
    Opt Express; 2011 Feb; 19(5):4521-7. PubMed ID: 21369283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission-type angle deviation microscopy.
    Chiu MH; Lai CW; Tan CT; Lai CF
    Appl Opt; 2008 Oct; 47(29):5442-5. PubMed ID: 18846187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry.
    Hsieh HL; Pan SW
    Appl Opt; 2013 Sep; 52(27):6840-8. PubMed ID: 24085186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance sensor based on spectral interferometry: numerical analysis.
    Zhang Y; Li H; Duan J; Shi A; Liu Y
    Appl Opt; 2013 May; 52(14):3253-9. PubMed ID: 23669838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.
    Zhou WJ; Halpern AR; Seefeld TH; Corn RM
    Anal Chem; 2012 Jan; 84(1):440-5. PubMed ID: 22126812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry.
    Lee JY; Lu MP; Lin KY; Huang SH
    Appl Opt; 2012 Mar; 51(8):1095-100. PubMed ID: 22410988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor.
    Liu L; Ma S; Ji Y; Chong X; Liu Z; He Y; Guo J
    Rev Sci Instrum; 2011 Feb; 82(2):023109. PubMed ID: 21361575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Portable Surface Plasmon Resonance Sensor with Multi-Sensing Points Based on the Linear CCD Sensor.
    Zhan J; Furui K; Nakajima H; Kaneki N; Ishimatsu R; Nakano K; Imato T; Hemmi A
    Anal Sci; 2016; 32(6):673-9. PubMed ID: 27302589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase detection sensitivity enhancement of surface plasmon resonance sensor in a heterodyne interferometer system.
    Kuo WK; Chang CH
    Appl Opt; 2011 Apr; 50(10):1345-9. PubMed ID: 21460899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical phase-shift detection of surface plasmon resonance.
    Shen S; Liu T; Guo J
    Appl Opt; 1998 Apr; 37(10):1747-51. PubMed ID: 18273083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of air refractive index based on surface plasmon resonance and phase detection.
    Chen Q; Luo H; Wang S; Wang F
    Opt Lett; 2012 Jul; 37(14):2916-8. PubMed ID: 22825177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an optical fiber sensor for angular displacement measurements.
    Jung GI; Kim JS; Lee TH; Choi JH; Oh HB; Kim AH; Eom GM; Lee JH; Chung SC; Park JR; Lee YJ; Park HJ; Jun JH
    Biomed Mater Eng; 2014; 24(1):771-80. PubMed ID: 24211963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer.
    Chen B; Zhang E; Yan L; Liu Y
    Rev Sci Instrum; 2014 Oct; 85(10):105103. PubMed ID: 25362452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing.
    Ng SP; Wu CM; Wu SY; Ho HP; Kong SK
    Biosens Bioelectron; 2010 Dec; 26(4):1593-8. PubMed ID: 20800466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive optical measurement techniques based on acousto-optic devices.
    Gass PA; Schalk S; Sambles JR
    Appl Opt; 1994 Nov; 33(31):7501-10. PubMed ID: 20941315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and compensation of the measurement error in a lock-in amplifier used for wavelength shift measurements in optical sensing application.
    Shi WJ; Ning YN; Grattan KT; Palmer AW
    Appl Opt; 1997 Aug; 36(22):5482-7. PubMed ID: 18259369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.