These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25967295)

  • 1. Compensation for straightness measurement systematic errors in six degree-of-freedom motion error simultaneous measurement system.
    Cui C; Feng Q; Zhang B
    Appl Opt; 2015 Apr; 54(11):3122-31. PubMed ID: 25967295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.
    Cui C; Feng Q; Zhang B; Zhao Y
    Opt Express; 2016 Mar; 24(6):6735-48. PubMed ID: 27136860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.
    Yu X; Gillmer SR; Woody SC; Ellis JD
    Rev Sci Instrum; 2016 Jun; 87(6):065109. PubMed ID: 27370499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion.
    Hu P; Mao S; Tan JB
    Opt Express; 2015 Nov; 23(22):28389-401. PubMed ID: 26561109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing Measurement and Compensation of Straightness Errors for Ultra-Precision Guideways.
    Zhou L; Zheng N; Li J; Yuan Z; Wang J; Fang F; Xu Q
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk decoupling measurement method to determine the six degrees of freedom of motion error of linear stages.
    Diao K; Chen C; Leach R; Liu X; Lu W; Yang W
    Appl Opt; 2022 Feb; 61(6):1284-1291. PubMed ID: 35201007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage.
    Liu CH; Chen JH; Teng YF
    Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional straightness measurement based on optical knife-edge sensing.
    Wang C; Zhong F; Ellis JD
    Rev Sci Instrum; 2017 Sep; 88(9):095109. PubMed ID: 28964181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser.
    Li J; Feng Q; Bao C; Zhao Y
    Opt Express; 2018 Feb; 26(3):2535-2545. PubMed ID: 29401792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A four parallel laser-based simultaneous measurement method for 6-degrees-of-freedom errors of rigid body with translational motion.
    Fu G; Zheng Y; Zhu S; Lu C; Deng X; Xie L; Yang J
    Rev Sci Instrum; 2022 Aug; 93(8):085101. PubMed ID: 36050090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach to Measure Tilt Motion, Straightness and Position of Precision Linear Stage with a 3D Sinusoidal-Groove Linear Reflective Grating and Triangular Wave-Based Subdivision Method.
    Tsai HA; Lo YL
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-degrees-of-freedom measurement system for measuring straightness errors and their position based on the Faraday effect.
    Zhang E; Teng X; Chen B; Zhang S; Li Z
    Appl Opt; 2020 Jan; 59(3):764-770. PubMed ID: 32225207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of straightness without Abbe error using an enhanced differential plane mirror interferometer.
    Jin T; Ji H; Hou W; Le Y; Shen L
    Appl Opt; 2017 Jan; 56(3):607-610. PubMed ID: 28157917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a 6-DoF motion system for realizing a linear datum for geometric measurements.
    Wang S; Cui J; Tan J; Liu Y
    Rev Sci Instrum; 2016 Aug; 87(8):085115. PubMed ID: 27587168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques.
    Kuang C; Hong E; Ni J
    Rev Sci Instrum; 2007 Sep; 78(9):095105. PubMed ID: 17902972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique.
    Huang P; Li Y; Wei H; Ren L; Zhao S
    Appl Opt; 2013 Sep; 52(26):6607-15. PubMed ID: 24085139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.