These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25967301)

  • 1. High-efficiency receiver architecture for resonance-fluorescence and Doppler lidars.
    Smith JA; Chu X
    Appl Opt; 2015 Apr; 54(11):3173-84. PubMed ID: 25967301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground.
    Smith JA; Chu X
    Appl Opt; 2016 Feb; 55(6):1366-80. PubMed ID: 26906590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents.
    Gardner CS; Vargas FA
    Appl Opt; 2014 Jul; 53(19):4100-16. PubMed ID: 25089967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrowband sodium lidar for the measurements of mesopause region temperature and wind.
    Li T; Fang X; Liu W; Gu SY; Dou X
    Appl Opt; 2012 Aug; 51(22):5401-11. PubMed ID: 22859028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system.
    Argall PS; Vassiliev ON; Sica RJ; Mwangi MM
    Appl Opt; 2000 May; 39(15):2393-400. PubMed ID: 18345149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar.
    Huang W; Chu X; Wiig J; Tan B; Yamashita C; Yuan T; Yue J; Harrell SD; She CY; Williams BP; Friedman JS; Hardesty RM
    Opt Lett; 2009 May; 34(10):1552-4. PubMed ID: 19448818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and optimization of Fe resonance fluorescence lidar performance for temperature-wind measurement.
    Li C; Wu D; Deng Q; Cui F; Zhong Z; Liu D; Wang Y
    Opt Express; 2022 Apr; 30(8):13278-13293. PubMed ID: 35472944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lidar observations of the meteoric deposition of mesospheric metals.
    Kane TJ; Gardner CS
    Science; 1993 Feb; 259(5099):1297-300. PubMed ID: 17732250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating photon noise biases in the computation of second-order statistics of lidar temperature, wind, and species measurements.
    Gardner CS; Chu X
    Appl Opt; 2020 Sep; 59(27):8259-8271. PubMed ID: 32976411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system.
    Sica RJ; Sargoytchev S; Argall PS; Borra EF; Girard L; Sparrow CT; Flatt S
    Appl Opt; 1995 Oct; 34(30):6925-36. PubMed ID: 21060554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Simultaneous Lidar Observations of Thermosphere-Ionosphere Fe and Na (TIFe and TINa) Layers at McMurdo (77.84°S, 166.67°E), Antarctica With Concurrent Measurements of Aurora Activity, Enhanced Ionization Layers, and Converging Electric Field.
    Chu X; Nishimura Y; Xu Z; Yu Z; Plane JMC; Gardner CS; Ogawa Y
    Geophys Res Lett; 2020 Oct; 47(20):e2020GL090181. PubMed ID: 33281241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesopause-region temperature and wind measurements with pseudorandom modulation continuous-wave (PMCW) lidar at 589 nm.
    She CY; Abo M; Yue J; Williams BP; Nagasawa C; Nakamura T
    Appl Opt; 2011 Jun; 50(18):2916-26. PubMed ID: 21691356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.
    Khanna J; Bandoro J; Sica RJ; McElroy CT
    Appl Opt; 2012 Nov; 51(33):7945-52. PubMed ID: 23207304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shuttle lidar resonance fluorescence investigations. 1: Analysis of Na and K measurements.
    Yeh SD; Browell EV
    Appl Opt; 1982 Jul; 21(13):2365-72. PubMed ID: 20396037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe Boltzmann temperature lidar: design, error analysis, and initial results at the north and south poles.
    Chu X; Pan W; Papen GC; Gardner CS; Gelbwachs JA
    Appl Opt; 2002 Jul; 41(21):4400-10. PubMed ID: 12148772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density.
    Li F; Li T; Fang X; Tian B; Dou X
    Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.