These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25967508)

  • 1. Hybrid method of free-form lens design for arbitrary illumination target.
    Ma Y; Zhang H; Su Z; He Y; Xu L; Liu X; Li H
    Appl Opt; 2015 May; 54(14):4503-8. PubMed ID: 25967508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.
    Wu R; Xu L; Liu P; Zhang Y; Zheng Z; Li H; Liu X
    Opt Lett; 2013 Jan; 38(2):229-31. PubMed ID: 23454971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing illumination lenses and mirrors by the numerical solution of Monge-Ampère equations.
    Brix K; Hafizogullari Y; Platen A
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):2227-36. PubMed ID: 26560938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the characteristics of a light source and target on the Monge-Ampére equation method in freeform optics design.
    Wu R; Benítez P; Zhang Y; Miñano JC
    Opt Lett; 2014 Feb; 39(3):634-7. PubMed ID: 24487884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeform surface off-axis illumination design with the Monge-Ampère equation method in optical lithography.
    Zhang Y; Wu R; Zheng Z
    Appl Opt; 2014 Nov; 53(31):7296-303. PubMed ID: 25402891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial design with L(2) Monge-Kantorovich theory for the Monge-Ampère equation method in freeform surface illumination design.
    Wu R; Zhang Y; Sulman MM; Zheng Z; Benítez P; Miñano JC
    Opt Express; 2014 Jun; 22(13):16161-77. PubMed ID: 24977868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double freeform illumination design for prescribed wavefronts and irradiances.
    Bösel C; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2018 Feb; 35(2):236-243. PubMed ID: 29400890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid design of diffractive optical elements for optical beam shaping.
    Doskolovich LL; Mingazov AA; Byzov EV; Skidanov RV; Ganchevskaya SV; Bykov DA; Bezus EA; Podlipnov VV; Porfirev AP; Kazanskiy NL
    Opt Express; 2021 Sep; 29(20):31875-31890. PubMed ID: 34615270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite method for precise freeform optical beam shaping.
    Feng Z; Froese BD; Liang R
    Appl Opt; 2015 Nov; 54(31):9364-9. PubMed ID: 26560594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeform lens design for a point source and far-field target.
    Romijn LB; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):1926-1939. PubMed ID: 31873712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ray mapping approach for the efficient design of continuous freeform surfaces.
    Bösel C; Gross H
    Opt Express; 2016 Jun; 24(13):14271-82. PubMed ID: 27410583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape.
    Mao X; Li H; Han Y; Luo Y
    Opt Express; 2015 Feb; 23(4):4313-28. PubMed ID: 25836468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions.
    Moiseev MA; Doskolovich LL; Kazanskiy NL
    Opt Express; 2011 May; 19 Suppl 3():A225-33. PubMed ID: 21643364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeform lens arrays for off-axis illumination in an optical lithography system.
    Wu R; Li H; Zheng Z; Liu X
    Appl Opt; 2011 Feb; 50(5):725-32. PubMed ID: 21343995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization design of irradiance array for LED uniform rectangular illumination.
    Wu R; Zheng Z; Li H; Liu X
    Appl Opt; 2012 May; 51(13):2257-63. PubMed ID: 22614399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beam shaping system design using double freeform optical surfaces.
    Feng Z; Huang L; Gong M; Jin G
    Opt Express; 2013 Jun; 21(12):14728-35. PubMed ID: 23787660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prescribed irradiance distributions with freeform gradient-index optics.
    Lippman DH; Schmidt GR
    Opt Express; 2020 Sep; 28(20):29132-29147. PubMed ID: 33114818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single freeform surface design for prescribed input wavefront and target irradiance.
    Bösel C; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1490-1499. PubMed ID: 29036152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of freeform mirrors generating prescribed far-field irradiance distributions.
    Doskolovich LL; Bykov DA; Andreev ES; Byzov EV; Moiseev MA; Bezus EA; Kazanskiy NL
    Appl Opt; 2020 Jun; 59(16):5006-5012. PubMed ID: 32543498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform illumination design by configuration of LEDs and optimization of LED lens for large-scale color-mixing applications.
    Liu P; Wang H; Wu R; Yang Y; Zhang Y; Zheng Z; Li H; Liu X
    Appl Opt; 2013 Jun; 52(17):3998-4005. PubMed ID: 23759848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.