These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 25968036)
1. Nanofocusing on circularly distributed tapered metallic waveguides by means of plasmonic vortex lenses. Garoli D; Ongarello T; Zilio P; Carli M; Romanato F Appl Opt; 2015 Feb; 54(5):1161-6. PubMed ID: 25968036 [TBL] [Abstract][Full Text] [Related]
2. Focusing dynamics on circular distributed tapered metallic waveguides by means of plasmonic vortex lenses. Ongarello T; Parisi G; Garoli D; Mari E; Zilio P; Romanato F Opt Lett; 2012 Nov; 37(21):4516-8. PubMed ID: 23114348 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Umakoshi T; Saito Y; Verma P Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672 [TBL] [Abstract][Full Text] [Related]
4. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light. Yu H; Zhang H; Wang Y; Han S; Yang H; Xu X; Wang Z; Petrov V; Wang J Sci Rep; 2013 Nov; 3():3191. PubMed ID: 24217130 [TBL] [Abstract][Full Text] [Related]
5. Bilayer holey plasmonic vortex lenses for the far field transmission of pure orbital angular momentum light states. Zilio P; Parisi G; Garoli D; Carli M; Romanato F Opt Lett; 2014 Aug; 39(16):4899-902. PubMed ID: 25121903 [TBL] [Abstract][Full Text] [Related]
6. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions. Yu CC; Lin KT; Su PY; Wang EY; Yen YT; Chen HL Nanoscale; 2016 Feb; 8(6):3647-59. PubMed ID: 26809318 [TBL] [Abstract][Full Text] [Related]
7. Deuterogenic Plasmonic Vortices. Yang Y; Wu L; Liu Y; Xie D; Jin Z; Li J; Hu G; Qiu CW Nano Lett; 2020 Sep; 20(9):6774-6779. PubMed ID: 32804512 [TBL] [Abstract][Full Text] [Related]
8. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation. Moon SW; Jeong HD; Lee S; Lee B; Ryu YS; Lee SY Opt Express; 2019 Jul; 27(14):19119-19129. PubMed ID: 31503675 [TBL] [Abstract][Full Text] [Related]
9. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Liu A; Rui G; Ren X; Zhan Q; Guo G; Guo G Opt Express; 2012 Oct; 20(22):24151-9. PubMed ID: 23187178 [TBL] [Abstract][Full Text] [Related]
10. Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture. Tanaka K; Katayama K; Tanaka M Opt Express; 2010 Jan; 18(2):787-98. PubMed ID: 20173901 [TBL] [Abstract][Full Text] [Related]
11. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. Berweger S; Atkin JM; Olmon RL; Raschke MB J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425 [TBL] [Abstract][Full Text] [Related]
16. Nanofocusing of optical energy in tapered plasmonic waveguides. Stockman MI Phys Rev Lett; 2004 Sep; 93(13):137404. PubMed ID: 15524758 [TBL] [Abstract][Full Text] [Related]
17. Plasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing. Zhang M; Wang T Nanoscale Res Lett; 2016 Dec; 11(1):421. PubMed ID: 27654281 [TBL] [Abstract][Full Text] [Related]
18. Coupling of spin and angular momentum of light in plasmonic vortex. Cho SW; Park J; Lee SY; Kim H; Lee B Opt Express; 2012 Apr; 20(9):10083-94. PubMed ID: 22535099 [TBL] [Abstract][Full Text] [Related]