These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25968041)

  • 21. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.
    Cai Y; Zhu J; Liu QH; Lin T; Zhou J; Ye L; Cai Z
    Opt Express; 2015 Dec; 23(25):32318-28. PubMed ID: 26699022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
    Yan W; Mortensen NA; Wubs M
    Opt Express; 2013 Jun; 21(12):15026-36. PubMed ID: 23787690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-infrared electro-optic modulator based on plasmonic graphene.
    Das S; Salandrino A; Wu JZ; Hui R
    Opt Lett; 2015 Apr; 40(7):1516-9. PubMed ID: 25831373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free space super focusing using all dielectric hyperbolic metamaterial.
    Salama NA; Desouky M; Obayya SSA; Swillam MA
    Sci Rep; 2020 Jul; 10(1):11529. PubMed ID: 32661281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infrared hyperbolic metasurface based on nanostructured van der Waals materials.
    Li P; Dolado I; Alfaro-Mozaz FJ; Casanova F; Hueso LE; Liu S; Edgar JH; Nikitin AY; Vélez S; Hillenbrand R
    Science; 2018 Feb; 359(6378):892-896. PubMed ID: 29472478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene.
    Argyropoulos C
    Opt Express; 2015 Sep; 23(18):23787-97. PubMed ID: 26368472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic control of spontaneous emission rate using tunable hyperbolic metamaterials.
    Chamoli SK; ElKabbash M; Zhang J; Guo C
    Opt Lett; 2020 Apr; 45(7):1671-1674. PubMed ID: 32235970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Titanium nitride-based hyperbolic metamaterial for near-infrared ultrasensitive sensing of microbes.
    Sarker D; Zubair A
    Phys Chem Chem Phys; 2024 Mar; 26(13):10273-10283. PubMed ID: 38497803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide.
    Zhou X; Yin X; Zhang T; Chen L; Li X
    Opt Express; 2015 May; 23(9):11657-64. PubMed ID: 25969257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theory of negative refraction in periodic stratified metamaterials.
    Rukhlenko ID; Premaratne M; Agrawal GP
    Opt Express; 2010 Dec; 18(26):27916-29. PubMed ID: 21197065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer.
    Saleki Z; Entezar SR; Madani A
    Appl Opt; 2017 Jan; 56(2):317-323. PubMed ID: 28085869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride.
    Gao H; Sun L; Zhao M
    Opt Express; 2020 Jul; 28(15):22076-22087. PubMed ID: 32752475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical coupling with graphene-based hyperbolic metamaterials.
    Xiang Y; Dai X; Guo J; Zhang H; Wen S; Tang D
    Sci Rep; 2014 Jun; 4():5483. PubMed ID: 24970717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-supported tunable extraordinary transmission.
    He X; Lu H
    Nanotechnology; 2014 Aug; 25(32):325201. PubMed ID: 25060732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizations of reconfigurable infrared metamaterial absorbers.
    Xu R; Lin YS
    Opt Lett; 2018 Oct; 43(19):4783-4786. PubMed ID: 30272739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene plasmonics for tuning photon decay rate near metallic split-ring resonator in a multilayered substrate.
    Chen YP; Sha WE; Jiang L; Hu J
    Opt Express; 2015 Feb; 23(3):2798-807. PubMed ID: 25836140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure.
    Kang B; Woo JH; Choi E; Lee HH; Kim ES; Kim J; Hwang TJ; Park YS; Kim DH; Wu JW
    Opt Express; 2010 Aug; 18(16):16492-8. PubMed ID: 20721037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering.
    Jiang ZH; Lin L; Bossard JA; Werner DH
    Opt Express; 2013 Dec; 21(25):31492-505. PubMed ID: 24514723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate.
    Lee Y; Kim SJ; Yun JG; Kim C; Lee SY; Lee B
    Opt Express; 2018 Nov; 26(24):32063-32073. PubMed ID: 30650785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.