These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25968209)

  • 1. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system.
    Hang C; Huang G; Deng L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036607. PubMed ID: 16605677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fourth-order Runge-Kutta in the interaction picture method for numerically solving the coupled nonlinear Schrodinger equation.
    Zhang Z; Chen L; Bao X
    Opt Express; 2010 Apr; 18(8):8261-76. PubMed ID: 20588672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann schemes for the nonlinear Schrödinger equation.
    Zhong L; Feng S; Dong P; Gao S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.
    Li H; Wu X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033309. PubMed ID: 25314566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
    Xu Z; Bao G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2347-53. PubMed ID: 21045898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of numerical approaches to the solution of the time-dependent Schrödinger equation in one dimension.
    Gharibnejad H; Schneider BI; Leadingham M; Schmale HJ
    Comput Phys Commun; 2020; 252():. PubMed ID: 33132403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green function method for the time domain simulation of pulse propagation.
    Huang J; Yao J; Xu D; Li R
    Appl Opt; 2014 Jun; 53(16):3533-9. PubMed ID: 24922431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains.
    Li H; Guo Y
    Phys Rev E; 2017 Dec; 96(6-1):063305. PubMed ID: 29347376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulated Raman scattering of intense laser pulses in air.
    Peñano JR; Sprangle P; Serafim P; Hafizi B; Ting A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056502. PubMed ID: 14682899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Averaged dynamics of optical pulses described by a nonlinear Schrödinger equation with periodic coefficients.
    Wingen A; Spatschek KH; Medvedev SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046610. PubMed ID: 14683068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond pulse propagation in nitrogen: numerical study of (3 + 1)-dimensional extended nonlinear Schrödinger equation with shock-term correction.
    Ando T; Fujimoto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026706. PubMed ID: 16196750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.