These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25968283)

  • 1. Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species.
    Agarwal J; Shaw TW; Schaefer HF; Bocarsly AB
    Inorg Chem; 2015 Jun; 54(11):5285-94. PubMed ID: 25968283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning on the Protonation-First Pathway for Electrocatalytic CO
    Ngo KT; McKinnon M; Mahanti B; Narayanan R; Grills DC; Ertem MZ; Rochford J
    J Am Chem Soc; 2017 Feb; 139(7):2604-2618. PubMed ID: 28118005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2.
    Agarwal J; Shaw TW; Stanton CJ; Majetich GF; Bocarsly AB; Schaefer HF
    Angew Chem Int Ed Engl; 2014 May; 53(20):5152-5. PubMed ID: 24700649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese Tricarbonyl Complexes with Asymmetric 2-Iminopyridine Ligands: Toward Decoupling Steric and Electronic Factors in Electrocatalytic CO
    Spall SJ; Keane T; Tory J; Cocker DC; Adams H; Fowler H; Meijer AJ; Hartl F; Weinstein JA
    Inorg Chem; 2016 Dec; 55(24):12568-12582. PubMed ID: 27989199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic Reduction of Carbon Dioxide by Mn(CN)(2,2'-bipyridine)(CO)3: CN Coordination Alters Mechanism.
    Machan CW; Stanton CJ; Vandezande JE; Majetich GF; Schaefer HF; Kubiak CP; Agarwal J
    Inorg Chem; 2015 Sep; 54(17):8849-56. PubMed ID: 26288172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Product Selectivity for Aqueous CO
    Reuillard B; Ly KH; Rosser TE; Kuehnel MF; Zebger I; Reisner E
    J Am Chem Soc; 2017 Oct; 139(41):14425-14435. PubMed ID: 28885841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dinuclear Rhenium Complex with a Proton Responsive Ligand as a Redox Catalyst for the Electrochemical CO
    Wilting A; Stolper T; Mata RA; Siewert I
    Inorg Chem; 2017 Apr; 56(7):4176-4185. PubMed ID: 28318245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Study for CO
    Li X; Panetier JA
    ACS Catal; 2021 Nov; 11(21):12989-13000. PubMed ID: 36860803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2.
    Costentin C; Drouet S; Passard G; Robert M; Savéant JM
    J Am Chem Soc; 2013 Jun; 135(24):9023-31. PubMed ID: 23692448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis.
    Sampson MD; Nguyen AD; Grice KA; Moore CE; Rheingold AL; Kubiak CP
    J Am Chem Soc; 2014 Apr; 136(14):5460-71. PubMed ID: 24641545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Investigation of Electrocatalytic CO
    McKinnon M; Belkina V; Ngo KT; Ertem MZ; Grills DC; Rochford J
    Front Chem; 2019; 7():628. PubMed ID: 31608271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials.
    Sampson MD; Kubiak CP
    J Am Chem Soc; 2016 Feb; 138(4):1386-93. PubMed ID: 26745814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Dioxide Promoted H(+) Reduction Using a Bis(imino)pyridine Manganese Electrocatalyst.
    Mukhopadhyay TK; MacLean NL; Gan L; Ashley DC; Groy TL; Baik MH; Jones AK; Trovitch RJ
    Inorg Chem; 2015 May; 54(9):4475-82. PubMed ID: 25901758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous Electrochemical Reduction of CO
    Ahmed ME; Rana A; Saha R; Dey S; Dey A
    Inorg Chem; 2020 Apr; 59(8):5292-5302. PubMed ID: 32267696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Proton Source in Electrocatalytic CO
    Franco F; Cometto C; Nencini L; Barolo C; Sordello F; Minero C; Fiedler J; Robert M; Gobetto R; Nervi C
    Chemistry; 2017 Apr; 23(20):4782-4793. PubMed ID: 28106930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.
    Grills DC; Matsubara Y; Kuwahara Y; Golisz SR; Kurtz DA; Mello BA
    J Phys Chem Lett; 2014 Jun; 5(11):2033-8. PubMed ID: 26273891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese Tricarbonyl Diimine Bromide Complexes as Electrocatalysts for Proton Reduction.
    Loke WLJ; Guo W; Sohail M; Bengali AA; Fan WY
    Inorg Chem; 2022 Dec; 61(50):20699-20708. PubMed ID: 36484599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic Reduction of Dioxygen to Hydrogen Peroxide by a Molecular Manganese Complex with a Bipyridine-Containing Schiff Base Ligand.
    Hooe SL; Rheingold AL; Machan CW
    J Am Chem Soc; 2018 Mar; 140(9):3232-3241. PubMed ID: 29216711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mn-NHC Electrocatalysts: Increasing π Acidity Lowers the Reduction Potential and Increases the Turnover Frequency for CO
    Stanton CJ; Vandezande JE; Majetich GF; Schaefer HF; Agarwal J
    Inorg Chem; 2016 Oct; 55(19):9509-9512. PubMed ID: 27636737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.