These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25968496)

  • 1. Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier.
    Livani AM; Kaatuzian H
    Appl Opt; 2015 Mar; 54(9):2164-73. PubMed ID: 25968496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.
    Livani AM; Kaatuzian H
    Appl Opt; 2015 Jul; 54(19):6103-10. PubMed ID: 26193159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells.
    Zhang X; Li Y; Li T; Lee SY; Feng C; Wang L; Mei T
    Opt Lett; 2010 Sep; 35(18):3075-7. PubMed ID: 20847783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Electro-Optical Pumping of Active Plasmonic Nanostructures.
    Vyshnevyy AA; Fedyanin DY
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser.
    Chamorovskiy A; Rautiainen J; Rantamäki A; Golant KM; Okhotnikov OG
    Opt Express; 2011 Mar; 19(7):6433-8. PubMed ID: 21451671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion relation for surface plasmon polaritons on a Schottky junction.
    Wijesinghe T; Premaratne M
    Opt Express; 2012 Mar; 20(7):7151-64. PubMed ID: 22453397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically pumped hybrid plasmonic waveguide.
    Wijesinghe T; Premaratne M; Agrawal GP
    Opt Express; 2014 Feb; 22(3):2681-94. PubMed ID: 24663560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.
    Kong L; Song Y; Kim JD; Yu L; Wasserman D; Chim WK; Chiam SY; Li X
    ACS Nano; 2017 Oct; 11(10):10193-10205. PubMed ID: 28880533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing the bidirectional electron transfer in a Schottky junction consisting of single CdS nanoparticles and a planar gold film.
    Li Z; Fang Y; Wang Y; Jiang Y; Liu T; Wang W
    Chem Sci; 2017 Jul; 8(7):5019-5023. PubMed ID: 30155222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits.
    Fedyanin DY; Krasavin AV; Arsenin AV; Zayats AV
    Nano Lett; 2012 May; 12(5):2459-63. PubMed ID: 22448893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow-Loss CMOS Copper Plasmonic Waveguides.
    Fedyanin DY; Yakubovsky DI; Kirtaev RV; Volkov VS
    Nano Lett; 2016 Jan; 16(1):362-6. PubMed ID: 26654281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems.
    Kanwal B; Armghan A; Ghafoor S; Atieh A; Sajid M; Kausar T; Mirza J; Lu Y
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS-Compatible Electronic-Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes.
    Wang F; Liu Y; Hoang TX; Chu HS; Chua SJ; Nijhuis CA
    Small; 2022 Jan; 18(1):e2105684. PubMed ID: 34741404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband unidirectional surface plasmon polaritons with low loss.
    Yan J; Shen Q; Zhang H; Li S; Tang H; Shen L
    Opt Express; 2023 Oct; 31(21):35313-35329. PubMed ID: 37859266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Subgap Density-of-States by Sub-Bandgap Optical Charge Pumping in In
    Yoo HB; Kim SK; Kim J; Yu J; Choi SJ; Kim DH; Kim DM
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4287-4291. PubMed ID: 31968459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires.
    Paul A; Zhen YR; Wang Y; Chang WS; Xia Y; Nordlander P; Link S
    Nano Lett; 2014 Jun; 14(6):3628-33. PubMed ID: 24798451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon polariton amplification in metal-semiconductor structures.
    Fedyanin DY; Arsenin AV
    Opt Express; 2011 Jun; 19(13):12524-31. PubMed ID: 21716493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces.
    Vinnakota RK; Genov DA
    Sci Rep; 2017 Sep; 7(1):10778. PubMed ID: 28883411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber.
    Wu H; Li R; Xiao H; Huang L; Yang H; Pan Z; Leng J; Zhou P
    Opt Express; 2021 Sep; 29(20):31337-31347. PubMed ID: 34615228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications.
    Firstov SV; Khegai AM; Kharakhordin AV; Alyshev SV; Firstova EG; Ososkov YJ; Melkumov MA; Iskhakova LD; Evlampieva EB; Lobanov AS; Yashkov MV; Guryanov AN
    Sci Rep; 2020 Jul; 10(1):11347. PubMed ID: 32647245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.