These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2596850)

  • 1. Force-flow and back-pressure relationships in mitochondrial energy transduction: an examination of extended state 3-state 4 transitions.
    Davis EJ; Davis-van Thienen WI
    Arch Biochem Biophys; 1989 Dec; 275(2):449-58. PubMed ID: 2596850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism.
    Berry MN; Gregory RB; Grivell AR; Henly DC; Nobes CD; Phillips JW; Wallace PG
    Biochim Biophys Acta; 1988 Dec; 936(3):294-306. PubMed ID: 2461736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanism of oxidative phosphorylation. Flow-force relationships in mitochondrial energy-linked reactions.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1987 Oct; 262(29):14158-63. PubMed ID: 3654656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential.
    Bernardi P; Azzone GF
    Eur J Biochem; 1983 Aug; 134(2):377-83. PubMed ID: 6191982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic limitations in the overall reaction of mitochondrial oxidative phosphorylation accounting for flux-dependent changes in the apparent delta GexP/delta mu H+ ratio.
    Kunz W; Gellerich FN; Schild L; Schönfeld P
    FEBS Lett; 1988 Jun; 233(1):17-21. PubMed ID: 2898384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-force relationships in mitochondrial oxidative phosphorylation.
    Woelders H; Putters J; van Dam K
    FEBS Lett; 1986 Aug; 204(1):17-21. PubMed ID: 3743759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force.
    Woelders H; van der Zande WJ; Colen AM; Wanders RJ; van Dam K
    FEBS Lett; 1985 Jan; 179(2):278-82. PubMed ID: 2981706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional effects on mitochondrial bioenergetics. Alterations in oxidative phosphorylation by rat liver mitochondria.
    Ferreira J; Gil L
    Biochem J; 1984 Feb; 218(1):61-7. PubMed ID: 6712614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease in mitochondrial levels of adenine nucleotides and concomitant mitochondrial dysfunction in ischemic rat liver.
    Watanabe F; Kamiike W; Nishimura T; Hashimoto T; Tagawa K
    J Biochem; 1983 Aug; 94(2):493-9. PubMed ID: 6630170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cyclosporine on oxidative phosphorylation and adenylate energy charge of regenerating rat liver.
    Uemoto S; Tanaka K; Asonuma K; Kitakado Y; Katayama T; Tanaka M; Inomata Y; Ozawa K
    Transplant Proc; 1989 Feb; 21(1 Pt 1):924-5. PubMed ID: 2705258
    [No Abstract]   [Full Text] [Related]  

  • 14. A mathematical model to study short-term regulation of mitochondrial energy transduction.
    Holzhütter HG; Henke W; Dubiel W; Gerber G
    Biochim Biophys Acta; 1985 Nov; 810(2):252-68. PubMed ID: 2865968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-ohmic proton conductance of mitochondria and liposomes.
    Krishnamoorthy G; Hinkle PC
    Biochemistry; 1984 Apr; 23(8):1640-5. PubMed ID: 6722116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of oxidative phosphorylation reactions in mitochondria isolated from hypothyroid rat liver.
    Ezawa I; Yamamoto M; Kimura S; Ogata E
    Eur J Biochem; 1984 May; 141(1):9-13. PubMed ID: 6723667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria.
    Brown GC; Brand MD
    Biochem J; 1986 Feb; 234(1):75-81. PubMed ID: 3010957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrease in mitochondrial energy coupling by thyroid hormones: a physiological effect rather than a pathological hyperthyroidism consequence.
    Bobyleva V; Pazienza TL; Maseroli R; Tomasi A; Salvioli S; Cossarizza A; Franceschi C; Skulachev VP
    FEBS Lett; 1998 Jul; 430(3):409-13. PubMed ID: 9688582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relationships between the adenine nucleotide system and oxidative phosphorylation in rat liver during starvation].
    Panov AV; Vavilin VA; Solov'ev VN; Liakhovich VV
    Biokhimiia; 1983; 48(2):235-43. PubMed ID: 6838922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.