These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25968509)

  • 1. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths.
    van der Laan JD; Scrymgeour DA; Kemme SA; Dereniak EL
    Appl Opt; 2015 Mar; 54(9):2266-74. PubMed ID: 25968509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible-IR transmission enhancement through fog using circularly polarized light.
    Zeng X; Chu J; Cao W; Kang W; Zhang R
    Appl Opt; 2018 Aug; 57(23):6817-6822. PubMed ID: 30129631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior signal persistence of circularly polarized light in polydisperse, real-world fog environments.
    van der Laan JD; Wright JB; Kemme SA; Scrymgeour DA
    Appl Opt; 2018 Jul; 57(19):5464-5473. PubMed ID: 30117842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased range and contrast in fog with circularly polarized imaging.
    van der Laan JD; Redman BJ; Segal JW; Westlake K; Wright JB; Bentz BZ
    Appl Opt; 2023 Apr; 62(10):2577-2586. PubMed ID: 37132806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization enhancement of linearly polarized light through foggy environments at UV-NIR wavelengths.
    Zeng X; Chen X; Li Y; Xiangnan Q
    Appl Opt; 2021 Sep; 60(26):8103-8108. PubMed ID: 34613073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of circular and linear polarization in scattering environments.
    van der Laan JD; Wright JB; Scrymgeour DA; Kemme SA; Dereniak EL
    Opt Express; 2015 Dec; 23(25):31874-88. PubMed ID: 26698979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments.
    van der Laan JD; Wright JB; Scrymgeour DA; Kemme SA; Dereniak EL
    Appl Opt; 2016 Nov; 55(32):9042-9048. PubMed ID: 27857287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative demonstration of the superiority of circularly polarized light in fog environments.
    Peña-Gutiérrez S; Ballesta-Garcia M; García-Gómez P; Royo S
    Opt Lett; 2022 Jan; 47(2):242-245. PubMed ID: 35030577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular polarization memory in polydisperse scattering media.
    Macdonald CM; Jacques SL; Meglinski IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033204. PubMed ID: 25871235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of linear and circular polarization in a settling smoke environment: theory and experiment.
    Zhang S; Zhan J; Fu Q; Duan J; Li Y; Jiang H
    Appl Opt; 2019 Jun; 58(17):4687-4694. PubMed ID: 31251293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the depolarization of circularly polarized light in turbid scattering media.
    Macdonald CM
    J Opt Soc Am A Opt Image Sci Vis; 2018 Dec; 35(12):2104-2110. PubMed ID: 30645285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of environment variation of glycerol smoke particles on the persistence of linear and circular polarization.
    Zhang S; Zhan J; Fu Q; Duan J; Li Y; Jiang H
    Opt Express; 2020 Jul; 28(14):20236-20248. PubMed ID: 32680088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the effect of optical thickness on polarization in a sea fog stratified environment.
    Bai X; Qu Y; Duan J; Xie G; Fu Q; Zhang S; Zhan J
    Appl Opt; 2023 Nov; 62(33):8749-8759. PubMed ID: 38038020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface.
    Li Z; Liu W; Cheng H; Chen S; Tian J
    Sci Rep; 2015 Dec; 5():18106. PubMed ID: 26667360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward transmission characteristics in polystyrene solution with different concentrations by use of circularly and linearly polarized light.
    Chu J; Wu Q; Zeng X; Li Y
    Appl Opt; 2019 Sep; 58(25):6750-6754. PubMed ID: 31503642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.
    Yoo S; Park QH
    Sci Rep; 2015 Sep; 5():14463. PubMed ID: 26403593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential polarization microscopy of changes in structure in spermatocyte nuclei.
    Mickols W; Maestre MF; Tinoco I
    Nature; 1987 Jul 30-Aug 5; 328(6129):452-4. PubMed ID: 3112580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Characterization of Polarized Light Backscattering in Fog Environments.
    Ballesta-Garcia M; Peña-Gutiérrez S; García-Gómez P; Royo S
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarimetric image recovery in turbid media employing circularly polarized light.
    Hu H; Zhao L; Li X; Wang H; Yang J; Li K; Liu T
    Opt Express; 2018 Sep; 26(19):25047-25059. PubMed ID: 30469613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.