These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 25968677)

  • 21. Temperature-independent lasing wavelength of highly stacked InAs quantum dot laser fabricated on InP(311)B substrate with Bi irradiation.
    Yanase S; Akahane K; Matsumoto A; Umezawa T; Yamamoto N; Tominaga Y; Kanno A; Maeda T; Sotobayashi H
    Opt Lett; 2023 Jun; 48(12):3287-3290. PubMed ID: 37319083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation of InAs islands to quantum ring structures by metalorganic vapor phase epitaxy.
    Aierken A; Hakkarainen T; Riikonen J; Sopanen M
    Nanotechnology; 2008 Jun; 19(24):245304. PubMed ID: 21825809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.
    Wang R; Sprengel S; Boehm G; Muneeb M; Baets R; Amann MC; Roelkens G
    Opt Express; 2016 Sep; 24(18):21081-9. PubMed ID: 27607711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrically pumped InP/GaAsP quantum dot lasers grown on (001) Si emitting at 750 nm.
    Luo W; Lin L; Huang J; Lin Q; Lau KM
    Opt Express; 2022 Oct; 30(22):40750-40755. PubMed ID: 36299004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers.
    Tang M; Chen S; Wu J; Jiang Q; Dorogan VG; Benamara M; Mazur YI; Salamo GJ; Seeds A; Liu H
    Opt Express; 2014 May; 22(10):11528-35. PubMed ID: 24921274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Temperature Growth of InGaAs Quantum Wells Using Migration-Enhanced Epitaxy.
    Liu L; Chen R; Kong C; Deng Z; Liu G; Yan J; Qin L; Du H; Song S; Zhang X; Wang W
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth.
    Yin Z; Tang X; Zhang J; Deny S; Teng J; Du A; Chin MK
    Nanotechnology; 2008 Feb; 19(8):085603. PubMed ID: 21730727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide.
    Bahriz M; Lollia G; Baranov AN; Teissier R
    Opt Express; 2015 Jan; 23(2):1523-8. PubMed ID: 25835909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance quantum cascade lasers at λ ∼ 9 µm grown by MOCVD.
    Sun Y; Yin R; Zhang J; Liu J; Fei T; Li K; Guo K; Jia Z; Liu S; Lu Q; Zhuo N; Wang L; Liu F; Zhai S
    Opt Express; 2022 Oct; 30(21):37272-37280. PubMed ID: 36258318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. InP-In
    Fonseka HA; Ameruddin AS; Caroff P; Tedeschi D; De Luca M; Mura F; Guo Y; Lysevych M; Wang F; Tan HH; Polimeni A; Jagadish C
    Nanoscale; 2017 Sep; 9(36):13554-13562. PubMed ID: 28872181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of cavity length-dependent temperature sensitivity of GaInNAs quantum dot lasers and quantum well lasers.
    Liu CY; Yoon SF; Cao Q; Tong CZ; Sun ZZ
    Nanotechnology; 2006 Nov; 17(22):5627-31. PubMed ID: 21727334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beam quality of InGaAs ridge lasers at high output power.
    Hunziker G; Harder C
    Appl Opt; 1995 Sep; 34(27):6118-22. PubMed ID: 21060452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers.
    Geskus D; Aravazhi S; Wörhoff K; Pollnau M
    Opt Express; 2010 Dec; 18(25):26107-12. PubMed ID: 21164959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrically injected 1.64µm emitting In
    Kim H; Shi B; Lingley Z; Li Q; Rajeev A; Brodie M; Lau KM; Kuech TF; Sin Y; Mawst LJ
    Opt Express; 2019 Nov; 27(23):33205-33216. PubMed ID: 31878394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband external cavity tunable quantum dot lasers with low injection current density.
    Lv XQ; Jin P; Wang WY; Wang ZG
    Opt Express; 2010 Apr; 18(9):8916-22. PubMed ID: 20588736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001)  GaP/Si.
    Liu AY; Peters J; Huang X; Jung D; Norman J; Lee ML; Gossard AC; Bowers JE
    Opt Lett; 2017 Jan; 42(2):338-341. PubMed ID: 28081107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. InAsP quantum dot lasers grown by MOVPE.
    Karomi I; Smowton PM; Shutts S; Krysa AB; Beanland R
    Opt Express; 2015 Oct; 23(21):27282-91. PubMed ID: 26480388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature.
    Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H
    Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180  nm.
    Korpijärvi VM; Viheriälä J; Koskinen M; Aho AT; Guina M
    Opt Lett; 2016 Feb; 41(4):657-60. PubMed ID: 26872156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncooled 2.5 Gb/s operation of 1.3 mum GaInNAs DQW lasers over a wide temperature range.
    Wei Y; Gustavsson JS; Sadeghi M; Wang S; Larsson A; Savolainen P; Melanen P; Sipilä P
    Opt Express; 2006 Apr; 14(7):2753-9. PubMed ID: 19516408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.