These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25968750)

  • 1. Using linear polarization for sensing and sizing dielectric nanoparticles.
    Barreda ÁI; Sanz JM; González F
    Opt Express; 2015 Apr; 23(7):9157-66. PubMed ID: 25968750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing with magnetic dipolar resonances in semiconductor nanospheres.
    García-Cámara B; Gómez-Medina R; Sáenz JJ; Sepúlveda B
    Opt Express; 2013 Oct; 21(20):23007-20. PubMed ID: 24104216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu
    Susman MD; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8177-8186. PubMed ID: 28133959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2005 Nov; 109(43):20331-8. PubMed ID: 16853630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.
    Butet J; Martin OJ
    Nanoscale; 2014 Dec; 6(24):15262-70. PubMed ID: 25381752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Sizing of Ultrafine Metallic Particles: Retrieval of Particle Size Distribution from Spectral Extinction Measurements.
    Oshchepkov SL; Sinyuk AF
    J Colloid Interface Sci; 1998 Dec; 208(1):137-146. PubMed ID: 9820757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing.
    Barreda ÁI; Gutiérrez Y; Sanz JM; González F; Moreno F
    Nanotechnology; 2016 Jun; 27(23):234002. PubMed ID: 27138445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering in spherically symmetric media.
    Perelman AY
    Appl Opt; 1979 Jul; 18(13):2307-14. PubMed ID: 20212651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.
    Hu J; Lang T; Shi GH
    Opt Express; 2017 Jun; 25(13):15241-15251. PubMed ID: 28788953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertically stacked plasmonic nanoparticles in a circular arrangement: a key to colorimetric refractive index sensing.
    Seo S; Gartia MR; Liu GL
    Nanoscale; 2014 Oct; 6(20):11795-802. PubMed ID: 25162116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of high sensitivity refractive index sensing based on magnetic plasmons in a simple metallic deep nanogroove array.
    Li DM; Kuang XY; Zhang H; Liang YZ; Xu T; Qing LY; Zhu YH; Zhang S; Wang WX; Wang W
    Opt Express; 2018 Dec; 26(26):34122-34130. PubMed ID: 30650840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong magnetic response of submicron silicon particles in the infrared.
    García-Etxarri A; Gómez-Medina R; Froufe-Pérez LS; López C; Chantada L; Scheffold F; Aizpurua J; Nieto-Vesperinas M; Sáenz JJ
    Opt Express; 2011 Mar; 19(6):4815-26. PubMed ID: 21445117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.
    Gomila G; Esteban-Ferrer D; Fumagalli L
    Nanotechnology; 2013 Dec; 24(50):505713. PubMed ID: 24284953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic dipole radiation tailored by substrates: numerical investigation.
    Markovich DL; Ginzburg P; Samusev AK; Belov PA; Zayats AV
    Opt Express; 2014 May; 22(9):10693-702. PubMed ID: 24921770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal.
    García-Cámara B; Algorri JF; Urruchi V; Sánchez-Pena JM
    Materials (Basel); 2014 Apr; 7(4):2784-2794. PubMed ID: 28788593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of particulate complex refractive index and particle size distribution variations on atmospheric extinction and absorption for visible through middle ir wavelengths.
    Jennings SG; Pinnick RG; Auvermann HJ
    Appl Opt; 1978 Dec; 17(24):3922-9. PubMed ID: 20208636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity study on the effect of the optical and physical properties of coated spherical particles on linear polarization in clear to semi-turbid waters.
    Tzabari M; Lerner A; Iluz D; Haspel C
    Appl Opt; 2018 Jul; 57(20):5806-5822. PubMed ID: 30118052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.