These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25968779)

  • 1. Optimization of sharp and viewing-angle-independent structural color.
    Hsu CW; Miller OD; Johnson SG; Soljačić M
    Opt Express; 2015 Apr; 23(7):9516-26. PubMed ID: 25968779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure.
    Yang C; Shen W; Zhang Y; Peng H; Zhang X; Liu X
    Opt Express; 2014 May; 22(9):11384-91. PubMed ID: 24921835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How noniridescent colors are generated by quasi-ordered structures of bird feathers.
    Noh H; Liew SF; Saranathan V; Mochrie SG; Prum RO; Dufresne ER; Cao H
    Adv Mater; 2010 Jul; 22(26-27):2871-80. PubMed ID: 20401903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent displays enabled by resonant nanoparticle scattering.
    Hsu CW; Zhen B; Qiu W; Shapira O; DeLacy BG; Joannopoulos JD; Soljačić M
    Nat Commun; 2014; 5():3152. PubMed ID: 24448356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering in twin-cavity narrow-band interference filters illuminated by a monochromatic beam.
    Xiong J; Sun YG; Hu G
    Appl Opt; 1997 Dec; 36(34):9014-20. PubMed ID: 18264459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tough and Variable-Band-Gap Photonic Hydrogel Displaying Programmable Angle-Dependent Colors.
    Haque MA; Mito K; Kurokawa T; Nakajima T; Nonoyama T; Ilyas M; Gong JP
    ACS Omega; 2018 Jan; 3(1):55-62. PubMed ID: 31457878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering.
    Hwang V; Stephenson AB; Barkley S; Brandt S; Xiao M; Aizenberg J; Manoharan VN
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33472972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays.
    Lee SY; Forestiere C; Pasquale AJ; Trevino J; Walsh G; Galli P; Romagnoli M; Dal Negro L
    Opt Express; 2011 Nov; 19(24):23818-30. PubMed ID: 22109407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Structural Colors with High Contrast and Wide Viewing Angles from Assemblies of Polypyrrole Black Coated Polystyrene Nanoparticles.
    Yang X; Ge D; Wu G; Liao Z; Yang S
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16289-95. PubMed ID: 27322393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.
    Li F; Tang B; Wu S; Zhang S
    Small; 2017 Jan; 13(3):. PubMed ID: 27813250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural coloration of transmission light through self-aligned and complementary plasmonic nanostructures.
    Ahn MS; Chung T; Jeong KH
    Nanoscale; 2018 Apr; 10(14):6313-6317. PubMed ID: 29589021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural colors in nature: the role of regularity and irregularity in the structure.
    Kinoshita S; Yoshioka S
    Chemphyschem; 2005 Aug; 6(8):1442-59. PubMed ID: 16015669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays.
    Fan W; Zeng J; Gan Q; Ji D; Song H; Liu W; Shi L; Wu L
    Sci Adv; 2019 Aug; 5(8):eaaw8755. PubMed ID: 31448332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color representation and interpretation of special effect coatings.
    Ferrero A; Perales E; Rabal AM; Campos J; Martínez-Verdú FM; Chorro E; Pons A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):436-47. PubMed ID: 24562043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural colors: from plasmonic to carbon nanostructures.
    Xu T; Shi H; Wu YK; Kaplan AF; Ok JG; Guo LJ
    Small; 2011 Nov; 7(22):3128-36. PubMed ID: 21932283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colors of transparent submicron suspensions on approaching the Rayleigh regime.
    Magatti D; Ferri F; Ragazzi P; Pigazzini MC; Averchi A; Di Trapani P
    Appl Opt; 2012 Apr; 51(12):2183-91. PubMed ID: 22534932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum plasmonic metamaterials for structural color printing.
    Cheng F; Gao J; Stan L; Rosenmann D; Czaplewski D; Yang X
    Opt Express; 2015 Jun; 23(11):14552-60. PubMed ID: 26072815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability.
    Mirshafieyan SS; Guo J
    Opt Express; 2014 Dec; 22(25):31545-54. PubMed ID: 25607104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of reflective color filters with high angular tolerance by particle swarm optimization method.
    Yang C; Hong L; Shen W; Zhang Y; Liu X; Zhen H
    Opt Express; 2013 Apr; 21(8):9315-23. PubMed ID: 23609642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.