These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25968784)

  • 61. Confocal laser displacement sensor using a micro-machined varifocal mirror.
    Nakazawa K; Sasaki T; Furuta H; Kamiya J; Sasaki H; Kamiya T; Hane K
    Appl Opt; 2017 Aug; 56(24):6911-6916. PubMed ID: 29048034
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.
    Zhang C; You Z; Huang H; Li G
    Sensors (Basel); 2010; 10(7):6848-60. PubMed ID: 22163580
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators.
    Fells JAJ; Welch C; Yip WC; Elston SJ; Booth MJ; Mehl GH; Wilkinson TD; Morris SM
    Opt Express; 2019 May; 27(11):15184-15193. PubMed ID: 31163718
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tip-tilt mirror suspension: beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals.
    Slagmolen BJ; Mullavey AJ; Miller J; McClelland DE; Fritschel P
    Rev Sci Instrum; 2011 Dec; 82(12):125108. PubMed ID: 22225250
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Self-Assembling Systems for Optical Out-of-Plane Coupling Devices.
    Zornberg LZ; Lewis DJ; Mertiri A; Hueckel T; Carter DJD; Macfarlane RJ
    ACS Nano; 2023 Feb; 17(4):3394-3400. PubMed ID: 36752596
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrated phased array for wide-angle beam steering.
    Yaacobi A; Sun J; Moresco M; Leake G; Coolbaugh D; Watts MR
    Opt Lett; 2014 Aug; 39(15):4575-8. PubMed ID: 25078232
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability.
    Shao S; Tian Z; Song S; Xu M
    Rev Sci Instrum; 2018 May; 89(5):055003. PubMed ID: 29864879
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MEMS-based linear micromirror array with a high filling factor for spatial light modulation.
    Xiao X; Dong X; Yu Y
    Opt Express; 2021 Oct; 29(21):33785-33794. PubMed ID: 34809183
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor.
    Lei H; Wen Q; Yu F; Zhou Y; Wen Z
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424147
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities.
    Chew X; Zhou G; Chau FS; Deng J; Tang X; Loke YC
    Opt Lett; 2010 Aug; 35(15):2517-9. PubMed ID: 20680043
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices.
    Zaghloul U; Bhushan B; Pons P; Papaioannou GJ; Coccetti F; Plana R
    Nanotechnology; 2011 Jan; 22(3):035705. PubMed ID: 21149964
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection.
    Chen CD; Wang YJ; Chang P
    Opt Express; 2012 Nov; 20(24):27003-17. PubMed ID: 23187556
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Method to Enhance Stroke Level of a MEMS Micromirror with Repulsive Electrostatic Force.
    Aryal N; Emadi A
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290392
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror.
    Han F; Wang W; Zhang X; Xie H
    Opt Express; 2016 Oct; 24(20):22650-22660. PubMed ID: 27828335
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanotribological characterization of digital micromirror devices using an atomic force microscope.
    Liu H; Bhushan B
    Ultramicroscopy; 2004 Aug; 100(3-4):391-412. PubMed ID: 15231332
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging.
    Bai Y; Pallapa M; Chen A; Constantinou P; Damaskinos S; Wilson BC; Yeow JT
    J Microsc; 2012 Feb; 245(2):210-20. PubMed ID: 22092486
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Micromechanics-based digitally controlled tunable optical beam shaper.
    Sumriddetchkajorn S
    Opt Lett; 2003 May; 28(9):737-9. PubMed ID: 12749292
    [TBL] [Abstract][Full Text] [Related]  

  • 78. On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.
    He L; Li M
    Opt Lett; 2014 May; 39(9):2553-6. PubMed ID: 24784043
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 3D mapping of intensity field about the focus of a micrometer-scale parabolic mirror.
    McDonald A; McConnell G; Cox DC; Riis E; Griffin PF
    Opt Express; 2015 Feb; 23(3):2375-82. PubMed ID: 25836105
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
    Shahid W; Qiu Z; Duan X; Li H; Wang TD; Oldham KR
    J Microelectromech Syst; 2014 Dec; 23(6):1440-1453. PubMed ID: 25506188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.