These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 25968805)

  • 1. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.
    Lee ML; Yeh YH; Tu SJ; Chen PC; Lai WC; Sheu JK
    Opt Express; 2015 Apr; 23(7):A401-12. PubMed ID: 25968805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength GaN-based LEDs grown on truncated hexagonal pyramids formed by selective-area regrowth on Si-implanted GaN templates.
    Lee ML; Yeh YH; Tu SJ; Chen PC; Wu MJ; Lai WC; Sheu JK
    Opt Express; 2013 Sep; 21 Suppl 5():A864-71. PubMed ID: 24104581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells.
    Chang HM; Lai WC; Chen WS; Chang SJ
    Opt Express; 2015 Apr; 23(7):A337-45. PubMed ID: 25968799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single nanowire light-emitting diodes using uniaxial and coaxial InGaN/GaN multiple quantum wells synthesized by metalorganic chemical vapor deposition.
    Ra YH; Navamathavan R; Yoo HI; Lee CR
    Nano Lett; 2014 Mar; 14(3):1537-45. PubMed ID: 24564712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InGaN/GaN superlattice underlayer for fabricating of red nanocolumn
    Yamada J; Mizuno A; Honda T; Yoshida K; Togashi R; Nomura I; Yamaguchi T; Honda T; Kishino K
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37494895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes.
    Ra YH; Navamathavan R; Park JH; Lee CR
    Nano Lett; 2013 Aug; 13(8):3506-16. PubMed ID: 23701263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-emitting diodes with surface gallium nitride p-n homojunction structure formed by selective area regrowth.
    Lee ML; Wang SS; Yeh YH; Liao PH; Sheu JK
    Sci Rep; 2019 Mar; 9(1):3243. PubMed ID: 30824803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.
    Ra YH; Navamathavan R; Park JH; Lee CR
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2111-7. PubMed ID: 23432423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition fluctuation of in and well-width fluctuation in InGaN/GaN multiple quantum wells in light-emitting diode devices.
    Gu GH; Jang DH; Nam KB; Park CG
    Microsc Microanal; 2013 Aug; 19 Suppl 5():99-104. PubMed ID: 23920184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes.
    Tsai CL; Wu WC
    Materials (Basel); 2014 May; 7(5):3758-3771. PubMed ID: 28788647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Underlayer for Efficient Core-Shell InGaN QWs Grown on
    Kapoor A; Finot S; Grenier V; Robin E; Bougerol C; Bleuse J; Jacopin G; Eymery J; Durand C
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19092-19101. PubMed ID: 32208628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.
    Jung BO; Bae SY; Lee S; Kim SY; Lee JY; Honda Y; Amano H
    Nanoscale Res Lett; 2016 Dec; 11(1):215. PubMed ID: 27102904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Mapping of Strain Partitioning and Relaxation in InGaN/GaN Nanowire Heterostructures.
    Park B; Lee JK; Koch CT; Wölz M; Geelhaar L; Oh SH
    Adv Sci (Weinh); 2022 Aug; 9(22):e2200323. PubMed ID: 35665488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.
    Song KM; Kim DH; Kim JM; Cho CY; Choi J; Kim K; Park J; Kim H
    Nanotechnology; 2017 Jun; 28(22):225703. PubMed ID: 28448276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Nonpolar and Semipolar InGaN Light-Emitting Diodes (LEDs).
    Jang J; Woo S; Min D; Nam O
    J Nanosci Nanotechnol; 2015 Mar; 15(3):1895-906. PubMed ID: 26413605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hierarchical semi-polar GaN/InGaN MQW coaxial nanowires on a patterned Si nanowire template.
    Johar MA; Kim T; Song HG; Waseem A; Kang JH; Hassan MA; Bagal IV; Cho YH; Ryu SW
    Nanoscale Adv; 2020 Apr; 2(4):1654-1665. PubMed ID: 36132313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure.
    Sheu JK; Chen FB; Yen WY; Wang YC; Liu CN; Yeh YH; Lee ML
    Opt Express; 2015 Apr; 23(7):A371-81. PubMed ID: 25968802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of free-standing GaN substrate on carrier localization in ultraviolet InGaN light-emitting diodes.
    Tsai MT; Chu CM; Huang CH; Wu YH; Chiu CH; Li ZY; Tu PM; Lee WI; Kuo HC
    Nanoscale Res Lett; 2014 Dec; 9(1):2418. PubMed ID: 26088993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InGaN light-emitting diodes with oblique sidewall facets formed by selective growth on SiO₂ patterned GaN film.
    Sheu JK; Chang KH; Tu SJ; Lee ML; Yang CC; Hsu CK; Lai WC
    Opt Express; 2010 Nov; 18 Suppl 4():A562-7. PubMed ID: 21165089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast carrier dynamics of conformally grown semi-polar (112[combining macron]2) GaN/InGaN multiple quantum well co-axial nanowires on m-axial GaN core nanowires.
    Johar MA; Song HG; Waseem A; Kang JH; Ha JS; Cho YH; Ryu SW
    Nanoscale; 2019 Jun; 11(22):10932-10943. PubMed ID: 31139802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.