These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25969006)

  • 1. Characterization of surface acoustic waves by stroboscopic white-light interferometry.
    Kokkonen K; Lipiäinen L; Shavrin I; Novotny S; Kaivola M; Ludvigsen H
    Opt Express; 2015 Apr; 23(8):9690-5. PubMed ID: 25969006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stroboscopic white-light interferometry of vibrating microstructures.
    Shavrin I; Lipiäinen L; Kokkonen K; Novotny S; Kaivola M; Ludvigsen H
    Opt Express; 2013 Jul; 21(14):16901-7. PubMed ID: 23938538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.
    Novotny S; Durairaj V; Shavrin I; Lipiäinen L; Kokkonen K; Kaivola M; Ludvigsen H
    Opt Express; 2014 Jun; 22(11):13625-33. PubMed ID: 24921556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A differential optical interferometer for measuring short pulses of surface acoustic waves.
    Shaw A; Teyssieux D; Laude V
    Ultrasonics; 2017 Sep; 80():72-77. PubMed ID: 28505608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroboscopic supercontinuum white-light interferometer for MEMS characterization.
    Hanhijärvi K; Kassamakov I; Heikkinen V; Aaltonen J; Sainiemi L; Grigoras K; Franssila S; Hæggström E
    Opt Lett; 2012 May; 37(10):1703-5. PubMed ID: 22627543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed stroboscopic imaging with frequency-doubled supercontinuum.
    Ryczkowski P; Nolvi A; Kassamakov I; Genty G; Hæggström E
    Opt Lett; 2013 Mar; 38(5):658-60. PubMed ID: 23455256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of evanescent wave properties of a bulk acoustic wave resonator.
    Kokkonen K; Meltaus J; Pensala T; Kaivola M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):557-9. PubMed ID: 22481792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.
    Xiong J; Xu X; Glorieux C; Matsuda O; Cheng L
    Rev Sci Instrum; 2015 May; 86(5):053107. PubMed ID: 26026514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stroboscopic scanning white light interferometry at 2.7 MHz with 1.6 µm coherence length using a non-phosphor LED source.
    Heikkinen V; Kassamakov I; Paulin T; Nolvi A; Hæggström E
    Opt Express; 2013 Mar; 21(5):5247-54. PubMed ID: 23482096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning white-light interferometry with a supercontinuum source.
    Kassamakov I; Hanhijärvi K; Abbadi I; Aaltonen J; Ludvigsen H; Haeggström E
    Opt Lett; 2009 May; 34(10):1582-4. PubMed ID: 19448828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.
    Yuldashev P; Karzova M; Khokhlova V; Ollivier S; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3314-24. PubMed ID: 26093421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution.
    Zhu T; He Q; Xiao X; Bao X
    Opt Express; 2013 Feb; 21(3):2953-63. PubMed ID: 23481753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves.
    Deboucq J; Duquennoy M; Ouaftouh M; Jenot F; Carlier J; Ourak M
    Rev Sci Instrum; 2011 Jun; 82(6):064905. PubMed ID: 21721722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of propagating and standing surface acoustic waves by stroboscopic X-ray photoemission electron microscopy.
    Foerster M; Statuto N; Casals B; Hernández-Mínguez A; Finizio S; Mandziak A; Aballe L; Hernàndez Ferràs JM; Macià F
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):184-193. PubMed ID: 30655484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-optic interferometer for surface profile measurement with vibration suppression.
    Kwon T; Kim SW
    Opt Express; 2011 Feb; 19(5):4223-30. PubMed ID: 21369252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer standard for traceable dynamic calibration of stroboscopic scanning white light interferometer.
    Kassamakov I; Tureanu A; Heikkinen V; Hæggström E
    Appl Opt; 2017 Mar; 56(9):2483-2488. PubMed ID: 28375356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective lipid bilayer dynamics excited by surface acoustic waves.
    Reusch T; Schülein FJ; Nicolas JD; Osterhoff M; Beerlink A; Krenner HJ; Müller M; Wixforth A; Salditt T
    Phys Rev Lett; 2014 Sep; 113(11):118102. PubMed ID: 25260008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stroboscopic holographic interferometry: measurements of vector components of a vibration.
    Hariharan P; Oreb BF; Freund CH
    Appl Opt; 1987 Sep; 26(18):3899-903. PubMed ID: 20490160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute calibration of interferometric systems for detection and measurement of surface acoustic waves.
    Spicer JB; Wagner JW
    Appl Opt; 1988 Aug; 27(16):3561-6. PubMed ID: 20539416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.