These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25969014)

  • 1. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber.
    Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H
    Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-sided polarization-independent plasmonic absorber at near-infrared region.
    Dai S; Zhao D; Li Q; Qiu M
    Opt Express; 2013 Jun; 21(11):13125-33. PubMed ID: 23736566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure.
    Dai Y; Ren W; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2014 Apr; 22(7):7465-72. PubMed ID: 24718121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions.
    Matsumori K; Fujimura R
    Opt Lett; 2018 Jun; 43(12):2981-2984. PubMed ID: 29905739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.
    Ghobadi A; Dereshgi SA; Hajian H; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Jul; 7(1):4755. PubMed ID: 28684879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks.
    Li Y; Liu Z; Zhang H; Tang P; Wu B; Liu G
    Opt Express; 2019 Apr; 27(8):11809-11818. PubMed ID: 31053021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber.
    Feng P; Li WD; Zhang W
    Opt Express; 2015 Feb; 23(3):2328-38. PubMed ID: 25836100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Infrared Ultra-Broadband Absorber Based on MIM Structure.
    Li M; Wang G; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range.
    Takatori K; Okamoto T; Ishibashi K
    Opt Express; 2018 Jan; 26(2):1342-1350. PubMed ID: 29402009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.
    Aydin K; Ferry VE; Briggs RM; Atwater HA
    Nat Commun; 2011 Nov; 2():517. PubMed ID: 22044996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure.
    Aalizadeh M; Khavasi A; Butun B; Ozbay E
    Sci Rep; 2018 Jun; 8(1):9162. PubMed ID: 29907773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths.
    Wu T; Lai J; Wang S; Li X; Huang Y
    Appl Opt; 2017 Jul; 56(21):5844-5848. PubMed ID: 29047899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface.
    Nicolas R; Lévêque G; Marae-Djouda J; Montay G; Madi Y; Plain J; Herro Z; Kazan M; Adam PM; Maurer T
    Sci Rep; 2015 Sep; 5():14419. PubMed ID: 26399425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-independent almost-perfect absorber controlled from narrowband to broadband.
    Chen J; Jin Y; Chen P; Shan Y; Xu J; Kong F; Shao J
    Opt Express; 2017 Jun; 25(12):13916-13922. PubMed ID: 28788834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.