These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 25969418)
1. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418 [TBL] [Abstract][Full Text] [Related]
2. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295 [TBL] [Abstract][Full Text] [Related]
4. A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Mohamad NR; Buang NA; Mahat NA; Lok YY; Huyop F; Aboul-Enein HY; Abdul Wahab R Enzyme Microb Technol; 2015 May; 72():49-55. PubMed ID: 25837507 [TBL] [Abstract][Full Text] [Related]
5. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study. Yeşiloğlu Y; Şit L Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873 [TBL] [Abstract][Full Text] [Related]
6. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
7. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate. Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Zheng MM; Lu Y; Dong L; Guo PM; Deng QC; Li WL; Feng YQ; Huang FH Bioresour Technol; 2012 Jul; 115():141-6. PubMed ID: 22209442 [TBL] [Abstract][Full Text] [Related]
9. Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica. Wang C; Li Y; Zhou G; Jiang X; Xu Y; Bu Z Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():261-9. PubMed ID: 25491828 [TBL] [Abstract][Full Text] [Related]
10. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. Zare A; Bordbar AK; Razmjou A; Jafarian F J Biotechnol; 2019 Jan; 289():55-63. PubMed ID: 30458213 [TBL] [Abstract][Full Text] [Related]
11. Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Onoja E; Chandren S; Razak FIA; Wahab RA J Biotechnol; 2018 Oct; 283():81-96. PubMed ID: 30063951 [TBL] [Abstract][Full Text] [Related]
12. Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Palocci C; Chronopoulou L; Venditti I; Cernia E; Diociaiuti M; Fratoddi I; Russo MV Biomacromolecules; 2007 Oct; 8(10):3047-53. PubMed ID: 17803276 [TBL] [Abstract][Full Text] [Related]
13. Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles. Zhang C; Dong X; Guo Z; Sun Y J Colloid Interface Sci; 2018 Jun; 519():145-153. PubMed ID: 29494877 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media. Mukherjee J; Solanki K; Gupta MN Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk-shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Ali Z; Tian L; Zhang B; Ali N; Khan M; Zhang Q Enzyme Microb Technol; 2017 Aug; 103():42-52. PubMed ID: 28554384 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): a new eco-friendly support. Cabrera-Padilla RY; Lisboa MC; Fricks AT; Franceschi E; Lima AS; Silva DP; Soares CM J Ind Microbiol Biotechnol; 2012 Feb; 39(2):289-98. PubMed ID: 21870100 [TBL] [Abstract][Full Text] [Related]
17. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Siódmiak J; Dulęba J; Kocot N; Mastalerz R; Haraldsson GG; Marszałł MP; Siódmiak T Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791124 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Chen YZ; Yang CT; Ching CB; Xu R Langmuir; 2008 Aug; 24(16):8877-84. PubMed ID: 18656972 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa. Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931 [TBL] [Abstract][Full Text] [Related]
20. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Hou C; Qi Z; Zhu H Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]