These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25969429)

  • 21. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.
    Tomioka K; Kobayashi Y; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2009 Apr; 20(14):145302. PubMed ID: 19420521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires.
    Mårtensson EK; Johansson J; Dick KA
    ACS Nanosci Au; 2022 Jun; 2(3):239-249. PubMed ID: 37101824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous gas-phase synthesis of nanowires with tunable properties.
    Heurlin M; Magnusson MH; Lindgren D; Ek M; Wallenberg LR; Deppert K; Samuelson L
    Nature; 2012 Dec; 492(7427):90-4. PubMed ID: 23201685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon.
    Russo-Averchi E; Heiss M; Michelet L; Krogstrup P; Nygard J; Magen C; Morante JR; Uccelli E; Arbiol J; Fontcuberta i Morral A
    Nanoscale; 2012 Mar; 4(5):1486-90. PubMed ID: 22314270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanowire morphology and particle phase control by tuning the In concentration of the foreign metal nanoparticle.
    Hallberg RT; Messing ME; Dick KA
    Nanotechnology; 2019 Feb; 30(5):054005. PubMed ID: 30511656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction.
    Tseng CH; Tambe MJ; Lim SK; Smith MJ; Gradecak S
    Nanotechnology; 2010 Apr; 21(16):165605. PubMed ID: 20351413
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Marnauza M; Tornberg M; Mårtensson EK; Jacobsson D; Dick KA
    Nanoscale Horiz; 2023 Jan; 8(2):291-296. PubMed ID: 36621012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape modification of III-V nanowires: the role of nucleation on sidewalls.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Tchernycheva M; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031606. PubMed ID: 18517394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled modulation of diameter and composition along individual III-V nitride nanowires.
    Lim SK; Crawford S; Haberfehlner G; Gradečak S
    Nano Lett; 2013 Feb; 13(2):331-6. PubMed ID: 22313231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of dilute nitride GaAsN/GaAs heterostructure nanowires on Si substrates.
    Araki Y; Yamaguchi M; Ishikawa F
    Nanotechnology; 2013 Feb; 24(6):065601. PubMed ID: 23324475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Twinning superlattice formation in GaAs nanowires.
    Burgess T; Breuer S; Caroff P; Wong-Leung J; Gao Q; Hoe Tan H; Jagadish C
    ACS Nano; 2013 Sep; 7(9):8105-14. PubMed ID: 23987994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth.
    Chen Y; Anttu N; Sivakumar S; Gompou E; Magnusson MH
    Nanotechnology; 2020 Mar; 31(13):134001. PubMed ID: 31917683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes.
    Lehmann S; Jacobsson D; Dick KA
    Nanotechnology; 2015 Jul; 26(30):301001. PubMed ID: 26160888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates.
    Kang JH; Gao Q; Parkinson P; Joyce HJ; Tan HH; Kim Y; Guo Y; Xu H; Zou J; Jagadish C
    Nanotechnology; 2012 Oct; 23(41):415702. PubMed ID: 23018759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diameter limitation in growth of III-Sb-containing nanowire heterostructures.
    Ek M; Borg BM; Johansson J; Dick KA
    ACS Nano; 2013 Apr; 7(4):3668-75. PubMed ID: 23464707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.