BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25969461)

  • 1. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
    Williams GM; Surtees JA
    Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model.
    Ezzatizadeh V; Pinto RM; Sandi C; Sandi M; Al-Mahdawi S; Te Riele H; Pook MA
    Neurobiol Dis; 2012 Apr; 46(1):165-71. PubMed ID: 22289650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells.
    Gannon AM; Frizzell A; Healy E; Lahue RS
    Nucleic Acids Res; 2012 Nov; 40(20):10324-33. PubMed ID: 22941650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.
    Aldous SG; Smith EJ; Landles C; Osborne GF; Cañibano-Pico M; Nita IM; Phillips J; Zhang Y; Jin B; Hirst MB; Benn CL; Bond BC; Edelmann W; Greene JR; Bates GP
    Brain; 2024 May; 147(5):1784-1798. PubMed ID: 38387080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.
    Tomé S; Holt I; Edelmann W; Morris GE; Munnich A; Pearson CE; Gourdon G
    PLoS Genet; 2009 May; 5(5):e1000482. PubMed ID: 19436705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
    Tomé S; Manley K; Simard JP; Clark GW; Slean MM; Swami M; Shelbourne PF; Tillier ER; Monckton DG; Messer A; Pearson CE
    PLoS Genet; 2013; 9(2):e1003280. PubMed ID: 23468640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
    Medina-Rivera M; Phelps S; Sridharan M; Becker J; Lamb NA; Kumar C; Sutton MD; Bielinsky A; Balakrishnan L; Surtees JA
    Nucleic Acids Res; 2023 Dec; 51(22):12185-12206. PubMed ID: 37930834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.
    Halabi A; Ditch S; Wang J; Grabczyk E
    J Biol Chem; 2012 Aug; 287(35):29958-67. PubMed ID: 22787155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae.
    Dixon MJ; Lahue RS
    Nucleic Acids Res; 2004; 32(4):1289-97. PubMed ID: 14982954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.
    Du J; Campau E; Soragni E; Jespersen C; Gottesfeld JM
    Hum Mol Genet; 2013 Dec; 22(25):5276-87. PubMed ID: 23933738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.
    van den Broek WJ; Nelen MR; Wansink DG; Coerwinkel MM; te Riele H; Groenen PJ; Wieringa B
    Hum Mol Genet; 2002 Jan; 11(2):191-8. PubMed ID: 11809728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.
    Morales F; Vásquez M; Santamaría C; Cuenca P; Corrales E; Monckton DG
    DNA Repair (Amst); 2016 Apr; 40():57-66. PubMed ID: 26994442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mismatch repair enhances convergent transcription-induced cell death at trinucleotide repeats by activating ATR.
    Chatterjee N; Lin Y; Wilson JH
    DNA Repair (Amst); 2016 Jun; 42():26-32. PubMed ID: 27131875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.