These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25969538)
21. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Jiang Y; Lee J; Lee JH; Lee JW; Kim JH; Choi WH; Yoo YD; Cha-Molstad H; Kim BY; Kwon YT; Noh SA; Kim KP; Lee MJ Autophagy; 2016 Nov; 12(11):2197-2212. PubMed ID: 27560450 [TBL] [Abstract][Full Text] [Related]
22. Hepatic lipase maturation: a partial proteome of interacting factors. Doolittle MH; Ben-Zeev O; Bassilian S; Whitelegge JP; Péterfy M; Wong H J Lipid Res; 2009 Jun; 50(6):1173-84. PubMed ID: 19136429 [TBL] [Abstract][Full Text] [Related]
23. Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Chung JY; Lim SW; Hong YJ; Hwang SO; Lee GM Biotechnol Bioeng; 2004 Mar; 85(5):539-46. PubMed ID: 14760694 [TBL] [Abstract][Full Text] [Related]
25. An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline. Proctor CJ; Tsirigotis M; Gray DA BMC Syst Biol; 2007 Mar; 1():17. PubMed ID: 17408507 [TBL] [Abstract][Full Text] [Related]
26. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. Wadas B; Piatkov KI; Brower CS; Varshavsky A J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035 [TBL] [Abstract][Full Text] [Related]
27. Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Zhang F; Patel DM; Colavita K; Rodionova I; Buckley B; Scott DA; Kumar A; Shabalina SA; Saha S; Chernov M; Osterman AL; Kashina A Nat Commun; 2015 Jul; 6():7517. PubMed ID: 26175007 [TBL] [Abstract][Full Text] [Related]
28. N-Terminal Arginylation Pull-down Analysis Using the R-Catcher Tool. Seo T; Han G; Cha-Molstad H Methods Mol Biol; 2023; 2620():219-228. PubMed ID: 37010765 [TBL] [Abstract][Full Text] [Related]
29. N-terminal arginylation and ubiquitin-mediated proteolysis in nerve regeneration. Chakraborty G; Ingoglia NA Brain Res Bull; 1993; 30(3-4):439-45. PubMed ID: 8384516 [TBL] [Abstract][Full Text] [Related]
30. FAT10ylation as a signal for proteasomal degradation. Schmidtke G; Aichem A; Groettrup M Biochim Biophys Acta; 2014 Jan; 1843(1):97-102. PubMed ID: 23333871 [TBL] [Abstract][Full Text] [Related]
31. Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin-independent degradation by the proteasome. Melo SP; Barbour KW; Berger FG J Biol Chem; 2011 Oct; 286(42):36559-67. PubMed ID: 21878626 [TBL] [Abstract][Full Text] [Related]
32. Ubiquitin-dependent and -independent proteasomal degradation of hepatitis B virus X protein. Kim JH; Sohn SY; Benedict Yen TS; Ahn BY Biochem Biophys Res Commun; 2008 Feb; 366(4):1036-42. PubMed ID: 18155658 [TBL] [Abstract][Full Text] [Related]
33. Post-translational N-terminal Arginylation of Protein Fragments: A Pivotal Portal to Proteolysis. Eldeeb MA; Ragheb MA Curr Protein Pept Sci; 2018; 19(12):1214-1223. PubMed ID: 30091410 [TBL] [Abstract][Full Text] [Related]
34. The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Jeon JH; Oh TR; Park S; Huh S; Kim JH; Mai BK; Lee JH; Kim SH; Lee MJ Neurotherapeutics; 2021 Jul; 18(3):1768-1782. PubMed ID: 33884581 [TBL] [Abstract][Full Text] [Related]
35. The endoplasmic reticulum-residing chaperone BiP is short-lived and metabolized through N-terminal arginylation. Shim SM; Choi HR; Sung KW; Lee YJ; Kim ST; Kim D; Mun SR; Hwang J; Cha-Molstad H; Ciechanover A; Kim BY; Kwon YT Sci Signal; 2018 Jan; 11(511):. PubMed ID: 29295953 [TBL] [Abstract][Full Text] [Related]
36. Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Chan SC; Lin SC; Li P Biochem J; 2007 Dec; 408(2):259-66. PubMed ID: 17711404 [TBL] [Abstract][Full Text] [Related]
37. Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. Suzuki R; Moriishi K; Fukuda K; Shirakura M; Ishii K; Shoji I; Wakita T; Miyamura T; Matsuura Y; Suzuki T J Virol; 2009 Mar; 83(5):2389-92. PubMed ID: 19091860 [TBL] [Abstract][Full Text] [Related]
38. The role of the ubiquitin proteasome system in the memory process. Lip PZ; Demasi M; Bonatto D Neurochem Int; 2017 Jan; 102():57-65. PubMed ID: 27916542 [TBL] [Abstract][Full Text] [Related]
39. Cysteine-Based Mimic of Arginylation Reproduces Neuroprotective Effects of the Authentic Post-Translational Modification on α-Synuclein. Pan B; Shimogawa M; Zhao J; Rhoades E; Kashina A; Petersson EJ J Am Chem Soc; 2022 May; 144(17):7911-7918. PubMed ID: 35451816 [TBL] [Abstract][Full Text] [Related]
40. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System. Guharoy M; Bhowmick P; Tompa P J Biol Chem; 2016 Mar; 291(13):6723-31. PubMed ID: 26851277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]