BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25969765)

  • 1. Analysis of mathematical modelling on potentiometric biosensors.
    Mehala N; Rajendran L
    ISRN Biochem; 2014; 2014():582675. PubMed ID: 25969765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State.
    Ramanathan M; Muthuramalingam R; Lakshmanan R
    J Membr Biol; 2015 Dec; 248(6):1127-35. PubMed ID: 26265446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.
    Pereira FM; Oliveira SC
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1717-27. PubMed ID: 27363415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Theoretical Approach to Understand the Nonlinear Processes in Enzymatic Electrochemical Biosensors.
    Annamalai M; Balu M; Alwarappan S; Lakshmanan R
    J Phys Chem B; 2024 Jul; 128(26):6308-6316. PubMed ID: 38888751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions.
    Mehala N; Rajendran L; Meena V
    J Membr Biol; 2017 Feb; 250(1):89-101. PubMed ID: 27904934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical expression of non-steady-state concentrations and current pertaining to compounds present in the enzyme membrane of biosensor.
    Shanmugarajan A; Alwarappan S; Rajendran L
    J Phys Chem A; 2011 May; 115(17):4299-306. PubMed ID: 21480652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of a carrier-mediated transport process in a liquid membrane.
    Ganesan S; Anitha S; Subbiah A; Rajendran L
    J Membr Biol; 2013 Jun; 246(6):435-42. PubMed ID: 23670364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient wavelet-based optimization algorithm for the solutions of reaction-diffusion equations in biomedicine.
    Mahalakshmi M; Hariharan G; Brindha GR
    Comput Methods Programs Biomed; 2020 Apr; 186():105218. PubMed ID: 31765936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes.
    Baronas R; Kulys J
    Sensors (Basel); 2008 Aug; 8(8):4800-4820. PubMed ID: 27873787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Reliable Spectral Method to Reaction-Diffusion Equations in Entrapped-Cell Photobioreactor Packed with Gel Granules Using Chebyshev Wavelets.
    Selvi MSM; Hariharan G; Kannan K
    J Membr Biol; 2017 Dec; 250(6):663-670. PubMed ID: 29147828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelet-Based Analytical Algorithm for Solving Steady-State Concentration in Immobilized Glucose Isomerase of Packed-Bed Reactor Model.
    Selvi MS; Hariharan G
    J Membr Biol; 2016 Aug; 249(4):559-68. PubMed ID: 27161606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unprecedented homotopy perturbation method for solving nonlinear equations in the enzymatic reaction of glucose in a spherical matrix.
    Saranya K; Mohan V; Kizek R; Fernandez C; Rajendran L
    Bioprocess Biosyst Eng; 2018 Feb; 41(2):281-294. PubMed ID: 29177718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):273-302. PubMed ID: 6513572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical Analysis of Reaction-Diffusion Equations Modeling the Michaelis-Menten Kinetics in a Micro-Disk Biosensor.
    Khan NA; Alshammari FS; Romero CAT; Sulaiman M; Laouini G
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.
    Egawa T; Callender R
    Math Biosci; 2019 Jul; 313():61-70. PubMed ID: 30935841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation.
    Goudar CT; Sonnad JR; Duggleby RG
    Biochim Biophys Acta; 1999 Jan; 1429(2):377-83. PubMed ID: 9989222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Can parameters of amperometric single-enzyme sensors be assessed using the concentration dependence of their response?].
    Sorochinskiĭ VV; Kurganov BI
    Prikl Biokhim Mikrobiol; 1995; 31(1):27-35. PubMed ID: 7740024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible, uncompetitive inhibitor.
    Moruno-Dávila MA; Solo CG; García-Moreno M; García-Cánovas F; Varón R
    Biosystems; 2001 Jun; 61(1):5-14. PubMed ID: 11448521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal temperature policy for immobilized enzyme packed bed reactor performing reversible Michaelis-Menten kinetics using the disjoint policy.
    Faqir NM; Attarakih MM
    Biotechnol Bioeng; 2002 Jan; 77(2):163-73. PubMed ID: 11753923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.