These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25969844)

  • 21. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution.
    McDonnell AG; Jason NN; Yeo LY; Friend JR; Cheng W; Prabhakar R
    Soft Matter; 2015 Nov; 11(41):8076-82. PubMed ID: 26333170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.
    Lau AW; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011917. PubMed ID: 19658739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of cell properties on rheological characterization of microalgae suspensions.
    Zhang X; Jiang Z; Chen L; Chou A; Yan H; Zuo YY; Zhang X
    Bioresour Technol; 2013 Jul; 139():209-13. PubMed ID: 23665517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.
    Potomkin M; Ryan SD; Berlyand L
    Bull Math Biol; 2016 Mar; 78(3):580-615. PubMed ID: 27025378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined rheometry and imaging study of viscosity reduction in bacterial suspensions.
    Martinez VA; Clément E; Arlt J; Douarche C; Dawson A; Schwarz-Linek J; Creppy AK; Škultéty V; Morozov AN; Auradou H; Poon WCK
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2326-2331. PubMed ID: 31964833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-property relationship of a soft colloidal glass in simple and mixed flows.
    Calabrese V; Varchanis S; Haward SJ; Tsamopoulos J; Shen AQ
    J Colloid Interface Sci; 2021 Nov; 601():454-466. PubMed ID: 34126412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic rheology of methylcellulose solutions in hyperbolic contractions and the effect of salt in shear and extensional flows.
    Micklavzina BL; Metaxas AE; Dutcher CS
    Soft Matter; 2020 Jun; 16(22):5273-5281. PubMed ID: 32459238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable switching between planar and helical flagellar swimming of a soft robotic sperm.
    Khalil ISM; Tabak AF; Abou Seif M; Klingner A; Sitti M
    PLoS One; 2018; 13(11):e0206456. PubMed ID: 30388132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensional rheological data from ex-situ measurements for predicting porous media behaviour of the viscoelastic EOR polymers.
    Azad MS; Trivedi JJ
    Data Brief; 2018 Oct; 20():293-305. PubMed ID: 30167437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extensional properties of hydroxypropyl ether guar gum solutions.
    Duxenneuner MR; Fischer P; Windhab EJ; Cooper-White JJ
    Biomacromolecules; 2008 Nov; 9(11):2989-96. PubMed ID: 18855439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological behavior of nasal sprays in shear and extension.
    Eccleston GM; Bakhshaee M; Hudson NE; Richards DH
    Drug Dev Ind Pharm; 2000 Sep; 26(9):975-83. PubMed ID: 10914322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions.
    Magariyama Y; Kudo S
    Biophys J; 2002 Aug; 83(2):733-9. PubMed ID: 12124260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheology of human blood plasma: viscoelastic versus Newtonian behavior.
    Brust M; Schaefer C; Doerr R; Pan L; Garcia M; Arratia PE; Wagner C
    Phys Rev Lett; 2013 Feb; 110(7):078305. PubMed ID: 25166417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscoelastic control of spatiotemporal order in bacterial active matter.
    Liu S; Shankar S; Marchetti MC; Wu Y
    Nature; 2021 Feb; 590(7844):80-84. PubMed ID: 33536650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flagella bending affects macroscopic properties of bacterial suspensions.
    Potomkin M; Tournus M; Berlyand LV; Aranson IS
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model of the bacterial flagellar motor: response to varying viscous load.
    Adam G
    J Mechanochem Cell Motil; 1977 Dec; 4(4):235-53. PubMed ID: 112211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observed frequency-independent torque in flagellar bacterial motors optimizes space exploration.
    Di Salvo ME; Condat CA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061907. PubMed ID: 23367976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.