These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25969925)

  • 1. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.
    Hartley IP; Hill TC; Wade TJ; Clement RJ; Moncrieff JB; Prieto-Blanco A; Disney MI; Huntley B; Williams M; Howden NJ; Wookey PA; Baxter R
    Glob Chang Biol; 2015 Oct; 21(10):3712-25. PubMed ID: 25969925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH
    D'Imperio L; Nielsen CS; Westergaard-Nielsen A; Michelsen A; Elberling B
    Glob Chang Biol; 2017 Feb; 23(2):966-976. PubMed ID: 27416869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest.
    Dalmagro HJ; Zanella de Arruda PH; Vourlitis GL; Lathuillière MJ; de S Nogueira J; Couto EG; Johnson MS
    Glob Chang Biol; 2019 Jun; 25(6):1967-1981. PubMed ID: 30854765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain.
    Kwon MJ; Beulig F; Ilie I; Wildner M; Küsel K; Merbold L; Mahecha MD; Zimov N; Zimov SA; Heimann M; Schuur EAG; Kostka JE; Kolle O; Hilke I; Göckede M
    Glob Chang Biol; 2017 Jun; 23(6):2396-2412. PubMed ID: 27901306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold season emissions dominate the Arctic tundra methane budget.
    Zona D; Gioli B; Commane R; Lindaas J; Wofsy SC; Miller CE; Dinardo SJ; Dengel S; Sweeney C; Karion A; Chang RY; Henderson JM; Murphy PC; Goodrich JP; Moreaux V; Liljedahl A; Watts JD; Kimball JS; Lipson DA; Oechel WC
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):40-5. PubMed ID: 26699476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rising plant-mediated methane emissions from arctic wetlands.
    Andresen CG; Lara MJ; Tweedie CE; Lougheed VL
    Glob Chang Biol; 2017 Mar; 23(3):1128-1139. PubMed ID: 27541438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.
    Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR
    Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale-A case study from the Mackenzie Delta, Canada.
    Kohnert K; Juhls B; Muster S; Antonova S; Serafimovich A; Metzger S; Hartmann J; Sachs T
    Glob Chang Biol; 2018 Sep; 24(9):3976-3989. PubMed ID: 29697179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.
    Sturtevant CS; Oechel WC
    Glob Chang Biol; 2013 Sep; 19(9):2853-66. PubMed ID: 23649775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019.
    Barker PA; Allen G; Pitt JR; Bauguitte SJ; Pasternak D; Cliff S; France JL; Fisher RE; Lee JD; Bower KN; Nisbet EG
    Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210192. PubMed ID: 34865529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.
    Zhao J; Peichl M; Nilsson MB
    Glob Chang Biol; 2016 Feb; 22(2):750-62. PubMed ID: 26452333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of vegetation classes in modeling CH
    Li T; Raivonen M; Alekseychik P; Aurela M; Lohila A; Zheng X; Zhang Q; Wang G; Mammarella I; Rinne J; Yu L; Xie B; Vesala T; Zhang W
    Sci Total Environ; 2016 Dec; 572():1111-1122. PubMed ID: 27522288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland.
    Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A
    Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent increases in annual, seasonal, and extreme methane fluxes driven by changes in climate and vegetation in boreal and temperate wetland ecosystems.
    Feron S; Malhotra A; Bansal S; Fluet-Chouinard E; McNicol G; Knox SH; Delwiche KB; Cordero RR; Ouyang Z; Zhang Z; Poulter B; Jackson RB
    Glob Chang Biol; 2024 Jan; 30(1):e17131. PubMed ID: 38273508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impoundment increases methane emissions in Phragmites-invaded coastal wetlands.
    Sanders-DeMott R; Eagle MJ; Kroeger KD; Wang F; Brooks TW; O'Keefe Suttles JA; Nick SK; Mann AG; Tang J
    Glob Chang Biol; 2022 Aug; 28(15):4539-4557. PubMed ID: 35616054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions.
    Ueyama M; Knox SH; Delwiche KB; Bansal S; Riley WJ; Baldocchi D; Hirano T; McNicol G; Schafer K; Windham-Myers L; Poulter B; Jackson RB; Chang KY; Chen J; Chu H; Desai AR; Gogo S; Iwata H; Kang M; Mammarella I; Peichl M; Sonnentag O; Tuittila ES; Ryu Y; Euskirchen ES; Göckede M; Jacotot A; Nilsson MB; Sachs T
    Glob Chang Biol; 2023 Apr; 29(8):2313-2334. PubMed ID: 36630533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane uptake in urban forests and lawns.
    Groffman PM; Pouyat RV
    Environ Sci Technol; 2009 Jul; 43(14):5229-35. PubMed ID: 19708346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.