These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25969928)

  • 1. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.
    Liu Y; Hu H; Jones JA; Guo Z; Li W; Chen X; Liu P; Liu H
    Eur J Neurosci; 2015 Aug; 42(3):1895-904. PubMed ID: 25969928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.
    Liu Y; Fan H; Li J; Jones JA; Liu P; Zhang B; Liu H
    Front Neurosci; 2018; 12():113. PubMed ID: 29535605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional demands influence vocal compensations to pitch errors heard in auditory feedback.
    Tumber AK; Scheerer NE; Jones JA
    PLoS One; 2014; 9(10):e109968. PubMed ID: 25303649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.
    Behroozmand R; Sangtian S; Korzyukov O; Larson CR
    Brain Res; 2016 Apr; 1636():1-12. PubMed ID: 26835556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention modulates cortical processing of pitch feedback errors in voice control.
    Hu H; Liu Y; Guo Z; Li W; Liu P; Chen S; Liu H
    Sci Rep; 2015 Jan; 5():7812. PubMed ID: 25589447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.
    Chen Z; Wong FC; Jones JA; Li W; Liu P; Chen X; Liu H
    Sci Rep; 2015 Aug; 5():13134. PubMed ID: 26278337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting auditory feedback control of speech production from subregional shape of subcortical structures.
    Tang X; Chen N; Zhang S; Jones JA; Zhang B; Li J; Liu P; Liu H
    Hum Brain Mapp; 2018 Jan; 39(1):459-471. PubMed ID: 29058356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting our own vocal errors: An event-related study of the thresholds for perceiving and compensating for vocal pitch errors.
    Scheerer NE; Jones JA
    Neuropsychologia; 2018 Jun; 114():158-167. PubMed ID: 29221832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERP correlates of the magnitude of pitch errors detected in the human voice.
    Scheerer NE; Behich J; Liu H; Jones JA
    Neuroscience; 2013 Jun; 240():176-85. PubMed ID: 23466810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization.
    Chen Z; Liu P; Wang EQ; Larson CR; Huang D; Liu H
    Brain Lang; 2012 Apr; 121(1):25-34. PubMed ID: 22377260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.
    Guo Z; Wu X; Li W; Jones JA; Yan N; Sheft S; Liu P; Liu H
    J Neurosci; 2017 Oct; 37(43):10323-10333. PubMed ID: 28951450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional homogeneity of intrinsic brain activity correlates with auditory-motor processing of vocal pitch errors.
    Guo Z; Huang X; Wang M; Jones JA; Dai Z; Li W; Liu P; Liu H
    Neuroimage; 2016 Nov; 142():565-575. PubMed ID: 27502049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related potential correlates of auditory feedback control of vocal production in experienced singers.
    Wu X; Zhang B; Wei L; Liu H; Liu P; Wang W
    Neuroreport; 2020 Mar; 31(4):325-331. PubMed ID: 32058428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurophysiological evidence of differential mechanisms involved in producing opposing and following responses to altered auditory feedback.
    Li W; Chen Z; Liu P; Zhang B; Huang D; Liu H
    Clin Neurophysiol; 2013 Nov; 124(11):2161-71. PubMed ID: 23751154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of parkinson's disease on the cortical mechanisms that support auditory-motor integration for voice control.
    Huang X; Chen X; Yan N; Jones JA; Wang EQ; Chen L; Guo Z; Li W; Liu P; Liu H
    Hum Brain Mapp; 2016 Dec; 37(12):4248-4261. PubMed ID: 27400999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback.
    Liu H; Meshman M; Behroozmand R; Larson CR
    Clin Neurophysiol; 2011 May; 122(5):951-7. PubMed ID: 20869305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down attention regulates the neural expression of audiovisual integration.
    Morís Fernández L; Visser M; Ventura-Campos N; Ávila C; Soto-Faraco S
    Neuroimage; 2015 Oct; 119():272-85. PubMed ID: 26119022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External cueing facilitates auditory-motor integration for speech control in individuals with Parkinson's disease.
    Huang X; Fan H; Li J; Jones JA; Wang EQ; Chen L; Chen X; Liu H
    Neurobiol Aging; 2019 Apr; 76():96-105. PubMed ID: 30710834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.
    Scheerer NE; Jones JA
    Eur J Neurosci; 2014 Dec; 40(12):3793-806. PubMed ID: 25263844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production.
    Li T; Zhu X; Wu X; Gong Y; Jones JA; Liu P; Chang Y; Yan N; Chen X; Liu H
    Cereb Cortex; 2022 Dec; 33(1):11-22. PubMed ID: 35174862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.