These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Kang R; Branson DT; Zheng T; Guglielmino E; Caldwell DG Bioinspir Biomim; 2013 Sep; 8(3):036008. PubMed ID: 23851387 [TBL] [Abstract][Full Text] [Related]
3. Design of a biomimetic robotic octopus arm. Laschi C; Mazzolai B; Mattoli V; Cianchetti M; Dario P Bioinspir Biomim; 2009 Mar; 4(1):015006. PubMed ID: 19258690 [TBL] [Abstract][Full Text] [Related]
4. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation. Hanassy S; Botvinnik A; Flash T; Hochner B Bioinspir Biomim; 2015 May; 10(3):035001. PubMed ID: 25970857 [TBL] [Abstract][Full Text] [Related]
5. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space. Giorelli M; Renda F; Calisti M; Arienti A; Ferri G; Laschi C Bioinspir Biomim; 2015 May; 10(3):035006. PubMed ID: 25970238 [TBL] [Abstract][Full Text] [Related]
6. Measuring information transfer in a soft robotic arm. Nakajima K; Schmidt N; Pfeifer R Bioinspir Biomim; 2015 May; 10(3):035007. PubMed ID: 25970447 [TBL] [Abstract][Full Text] [Related]
7. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Renda F; Cianchetti M; Giorelli M; Arienti A; Laschi C Bioinspir Biomim; 2012 Jun; 7(2):025006. PubMed ID: 22617222 [TBL] [Abstract][Full Text] [Related]
8. Kinematic feedback control laws for generating natural arm movements. Kim D; Jang C; Park FC Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165 [TBL] [Abstract][Full Text] [Related]
9. Biorobotic investigation on the muscle structure of an octopus tentacle. Mazzolai B; Laschi C; Cianchetti M; Patanè F; Bassi-Luciani L; Izzo I; Dario P Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1471-4. PubMed ID: 18002244 [TBL] [Abstract][Full Text] [Related]
12. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Mazzolai B; Margheri L; Cianchetti M; Dario P; Laschi C Bioinspir Biomim; 2012 Jun; 7(2):025005. PubMed ID: 22617166 [TBL] [Abstract][Full Text] [Related]
13. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Cianchetti M; Calisti M; Margheri L; Kuba M; Laschi C Bioinspir Biomim; 2015 May; 10(3):035003. PubMed ID: 25970014 [TBL] [Abstract][Full Text] [Related]
14. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Margheri L; Laschi C; Mazzolai B Bioinspir Biomim; 2012 Jun; 7(2):025004. PubMed ID: 22617132 [TBL] [Abstract][Full Text] [Related]
15. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints. Annunziata S; Paskarbeit J; Schneider A Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821 [TBL] [Abstract][Full Text] [Related]
16. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development. Kazakidi A; Vavourakis V; Tsakiris DP; Ekaterinaris JA Comput Methods Biomech Biomed Engin; 2015; 18(12):1321-39. PubMed ID: 24730546 [TBL] [Abstract][Full Text] [Related]
17. An octopus-bioinspired solution to movement and manipulation for soft robots. Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493 [TBL] [Abstract][Full Text] [Related]
18. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. Lilly JH IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798 [TBL] [Abstract][Full Text] [Related]
19. An artificial muscle actuator for biomimetic underwater propulsors. Yim W; Lee J; Kim KJ Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327 [TBL] [Abstract][Full Text] [Related]