These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25970002)

  • 1. Integration of Ligand Field Molecular Mechanics in Tinker.
    Foscato M; Deeth RJ; Jensen VR
    J Chem Inf Model; 2015 Jun; 55(6):1282-90. PubMed ID: 25970002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DommiMOE: an implementation of ligand field molecular mechanics in the molecular operating environment.
    Deeth RJ; Fey N; Williams-Hubbard B
    J Comput Chem; 2005 Jan; 26(2):123-30. PubMed ID: 15584081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides.
    Mutter ST; Deeth RJ; Turner M; Platts JA
    J Biomol Struct Dyn; 2018 Apr; 36(5):1145-1153. PubMed ID: 28362147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes.
    Deeth RJ; Halcrow MA; Kershaw Cook LJ; Raithby PR
    Chemistry; 2018 Apr; 24(20):5204-5212. PubMed ID: 29112322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the performance of ligand field molecular mechanics for model complexes containing the peroxido-bridged [Cu2O2]2+ center.
    Diedrich C; Deeth RJ
    Inorg Chem; 2008 Apr; 47(7):2494-506. PubMed ID: 18293917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the various minima on the potential energy surface of bispidine copper(II) complexes: a further test for ligand field molecular mechanics.
    Bentz A; Comba P; Deeth RJ; Kerscher M; Seibold B; Wadepohl H
    Inorg Chem; 2008 Oct; 47(20):9518-27. PubMed ID: 18811152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive molecular mechanics model for oxidized type I copper proteins: active site structures, strain energies, and entatic bulging.
    Deeth RJ
    Inorg Chem; 2007 May; 46(11):4492-503. PubMed ID: 17461575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes.
    Deeth RJ; Randell K
    Inorg Chem; 2008 Aug; 47(16):7377-88. PubMed ID: 18652450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: elongations, compressions and the pathways in between.
    Deeth RJ; Hearnshaw LJ
    Dalton Trans; 2006 Feb; (8):1092-100. PubMed ID: 16474895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modelling for coordination compounds: Cu(II)-amine complexes.
    Deeth RJ; Hearnshaw LJ
    Dalton Trans; 2005 Nov; (22):3638-45. PubMed ID: 16258614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trinuclear copper complexes with triplesalen ligands: geometric and electronic effects on ferromagnetic coupling via the spin-polarization mechanism.
    Glaser T; Heidemeier M; Strautmann JB; Bögge H; Stammler A; Krickemeyer E; Huenerbein R; Grimme S; Bothe E; Bill E
    Chemistry; 2007; 13(33):9191-206. PubMed ID: 17937379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanide-bridged Fe(III)-Cu(II) complexes: Jahn-Teller isomerism and its influence on the magnetic properties.
    Atanasov M; Comba P; Helmle S
    Inorg Chem; 2012 Sep; 51(17):9357-68. PubMed ID: 22906556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending ligand field molecular mechanics to modelling organometallic π-bonded systems: applications to ruthenium-arenes.
    Brodbeck R; Deeth RJ
    Dalton Trans; 2011 Nov; 40(42):11147-55. PubMed ID: 21792446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and spectroscopic characterization of copper(II) tetraazaiminooxime macrocyclic complexes--a tetragonal distortion analysis.
    Protasiewyck GM; Nunes FS
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):549-52. PubMed ID: 16529994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast excited-state dynamics of copper(I) complexes.
    Iwamura M; Takeuchi S; Tahara T
    Acc Chem Res; 2015 Mar; 48(3):782-91. PubMed ID: 25646861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations.
    Deeth RJ; Diedrich C
    J Biol Inorg Chem; 2010 Feb; 15(2):117-29. PubMed ID: 19690900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the spin-Hamiltonian parameters and the Jahn-Teller distortions for tetragonal Cu(H(2)O)(6)(2+) clusters in trigonal A(2)Mg(3)(NO(3))(12).24H(2)O (A=La, Bi) crystals.
    Feng WL; Yang WQ; Zheng WC
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Apr; 75(4):1280-2. PubMed ID: 20138573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT calculations of the EPR parameters for Cu(ii) DETA imidazole complexes.
    Ames WM; Larsen SC
    Phys Chem Chem Phys; 2009 Oct; 11(37):8266-74. PubMed ID: 19756283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of the structure and electronic circular dichroism spectroscopy of blue copper proteins.
    Do H; Deeth RJ; Besley NA
    J Phys Chem B; 2013 Jul; 117(27):8105-12. PubMed ID: 23773120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric and hydrogen-bonding effects on the stability of copper complexes with small molecules.
    Wada A; Honda Y; Yamaguchi S; Nagatomo S; Kitagawa T; Jitsukawa K; Masuda H
    Inorg Chem; 2004 Sep; 43(18):5725-35. PubMed ID: 15332825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.