These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25970032)

  • 1. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.
    Zhang HZ; Zhang FT; Zhang XH; Huang D; Zhou YL; Li ZH; Zhang XX
    Anal Chem; 2015 Jun; 87(12):6397-402. PubMed ID: 25970032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disposable microcapsule array chip fabricated by ice printing combined with isothermal amplification for Salmonella DNA detection.
    He E; Cao T; Cai L; Guo D; Zhou Y; Zhang X; Li Z
    RSC Adv; 2018 Nov; 8(69):39561-39566. PubMed ID: 35558039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Quantitative Fluorescence Detection of Copper Ions with Disposable Microcapsule Arrays Utilizing Functional Nucleic Acid Strategy.
    He E; Cai L; Zheng F; Zhou Q; Guo D; Zhou Y; Zhang X; Li Z
    Sci Rep; 2019 Jan; 9(1):36. PubMed ID: 30631123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Integrated, Automated, and Smartphone Enabled Point-of-Source Portable Platform With Microfluidic Device for Nitrite Detection.
    Dudala S; Dubey SK; Goel S
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1518-1524. PubMed ID: 31494558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [3D printed portable gel electrophoresis device for rapid detection of proteins].
    Li Y; Wang D; Nong Q; Liu L; Zhang M; Liang Y; Hu L; He B; Jiang G
    Se Pu; 2020 Nov; 38(11):1316-1322. PubMed ID: 34213103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics.
    Xiao L; Liu X; Zhong R; Zhang K; Zhang X; Zhou X; Lin B; Du Y
    Electrophoresis; 2013 Nov; 34(20-21):3003-7. PubMed ID: 24038030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel screen-printed electrode array for rapid high-throughput detection.
    Mu S; Wang X; Li YT; Wang Y; Li DW; Long YT
    Analyst; 2012 Jul; 137(14):3220-3. PubMed ID: 22590703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-care testing: applications of 3D printing.
    Chan HN; Tan MJA; Wu H
    Lab Chip; 2017 Aug; 17(16):2713-2739. PubMed ID: 28702608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric Bar-Chart Chips for Biosensing.
    Song Y; Li Y; Qin L
    Methods Mol Biol; 2017; 1570():105-115. PubMed ID: 28238132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.
    Li B; Fu L; Zhang W; Feng W; Chen L
    Electrophoresis; 2014 Apr; 35(8):1152-9. PubMed ID: 24375226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples.
    Zhang L; Cao X; Wang L; Zhao X; Zhang S; Wang P
    Analyst; 2015 Jun; 140(12):4105-13. PubMed ID: 25893863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.
    Liang WH; Chu CH; Yang RJ
    Talanta; 2015 Dec; 145():6-11. PubMed ID: 26459437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow controllable three-dimensional paper-based microfluidic analytical devices fabricated by 3D printing technology.
    Fu X; Xia B; Ji B; Lei S; Zhou Y
    Anal Chim Acta; 2019 Aug; 1065():64-70. PubMed ID: 31005152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.
    Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK
    Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips.
    Marasso SL; Mombello D; Cocuzza M; Casalena D; Ferrante I; Nesca A; Poiklik P; Rekker K; Aaspollu A; Ferrero S; Pirri CF
    Biomed Microdevices; 2014 Oct; 16(5):661-70. PubMed ID: 24831451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.