These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25970202)

  • 1. Monitoring brain activity with protein voltage and calcium sensors.
    Storace DA; Braubach OR; Jin L; Cohen LB; Sung U
    Sci Rep; 2015 May; 5():10212. PubMed ID: 25970202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight.
    Platisa J; Zeng H; Madisen L; Cohen LB; Pieribone VA; Storace DA
    Sci Rep; 2022 Feb; 12(1):1875. PubMed ID: 35115567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Genetically Encoded Voltage Indicators (GEVIs) to Study the Input-Output Transformation of the Mammalian Olfactory Bulb.
    Storace DA; Cohen LB; Choi Y
    Front Cell Neurosci; 2019; 13():342. PubMed ID: 31417362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.
    Ghitani N; Bayguinov PO; Ma Y; Jackson MB
    J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight.
    Leong LM; Storace DA
    Neurophotonics; 2024 Jul; 11(3):033402. PubMed ID: 38288247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight.
    Nakajima R; Baker BJ
    J Phys D Appl Phys; 2018 Dec; 51(50):. PubMed ID: 30739956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correspondence between odorant-evoked patterns of receptor neuron input and intrinsic optical signals in the mouse olfactory bulb.
    Wachowiak M; Cohen LB
    J Neurophysiol; 2003 Mar; 89(3):1623-39. PubMed ID: 12612023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging.
    Yaksi E; Friedrich RW
    Nat Methods; 2006 May; 3(5):377-83. PubMed ID: 16628208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional transformations of odor inputs in the mouse olfactory bulb.
    Adam Y; Livneh Y; Miyamichi K; Groysman M; Luo L; Mizrahi A
    Front Neural Circuits; 2014; 8():129. PubMed ID: 25408637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor iGluSnFR.
    Xie Y; Chan AW; McGirr A; Xue S; Xiao D; Zeng H; Murphy TH
    J Neurosci; 2016 Jan; 36(4):1261-72. PubMed ID: 26818514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Evaluation of Genetically Encoded Voltage Indicators.
    Bando Y; Sakamoto M; Kim S; Ayzenshtat I; Yuste R
    Cell Rep; 2019 Jan; 26(3):802-813.e4. PubMed ID: 30650368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelet-based multi-resolution statistics for optical imaging signals: Application to automated detection of odour activated glomeruli in the mouse olfactory bulb.
    Bathellier B; Van De Ville D; Blu T; Unser M; Carleton A
    Neuroimage; 2007 Feb; 34(3):1020-35. PubMed ID: 17185002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically Encoded Protein Sensors of Membrane Potential.
    Storace D; Rad MS; Han Z; Jin L; Cohen LB; Hughes T; Baker BJ; Sung U
    Adv Exp Med Biol; 2015; 859():493-509. PubMed ID: 26238066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo.
    Vucinić D; Cohen LB; Kosmidis EK
    J Neurophysiol; 2006 Mar; 95(3):1881-7. PubMed ID: 16319205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of CO2 and odorant signals in the mouse olfactory bulb.
    Gao L; Hu J; Zhong C; Luo M
    Neuroscience; 2010 Oct; 170(3):881-92. PubMed ID: 20696215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes.
    Homma R; Baker BJ; Jin L; Garaschuk O; Konnerth A; Cohen LB; Bleau CX; Canepari M; Djurisic M; Zecevic D
    Methods Mol Biol; 2009; 489():43-79. PubMed ID: 18839087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.
    Dong Q; Du L; Zhuang L; Li R; Liu Q; Wang P
    Biosens Bioelectron; 2013 Nov; 49():263-9. PubMed ID: 23774163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb.
    Nagayama S; Takahashi YK; Yoshihara Y; Mori K
    J Neurophysiol; 2004 Jun; 91(6):2532-40. PubMed ID: 14960563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and testing in plants of ArcLight, a genetically-encoded voltage indicator used in neuroscience research.
    Matzke AJ; Matzke M
    BMC Plant Biol; 2015 Oct; 15():245. PubMed ID: 26459340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grouping and representation of odorant receptors in domains of the olfactory bulb sensory map.
    Nagao H; Yamaguchi M; Takahash Y; Mori K
    Microsc Res Tech; 2002 Aug; 58(3):168-75. PubMed ID: 12203695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.