These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25970981)

  • 1. Electrical and electrochemical migration characteristics of Ag/Cu nanopaste patterns.
    Koh M; Kim KS; Park BG; Jung KH; Lee CS; Choa YH; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8915-9. PubMed ID: 25970981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screen-printed Cu circuit for low-Cost fabrication and its electrochemical migration characteristics.
    Jung KH; Kim KS; Park BG; Jung SB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9493-7. PubMed ID: 25971089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical migration characteristics of screen-printed silver patterns on FR-4 substrate.
    Kim KS; Ahn JH; Noh BI; Jung SB
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3219-23. PubMed ID: 22849092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sintering temperature on electrical characteristics of screen-printed Ag nanopaste on FR4 substrate.
    Lee YC; Ahn JH; Kim KS; Yoon JW; Kim JW; Kim Y; Jung SB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5915-20. PubMed ID: 22121631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and adhesion characteristics of a silver nanopaste screen-printed on Si substrate.
    Kim KS; Kim Y; Jung SB
    Nanoscale Res Lett; 2012 Jan; 7(1):49. PubMed ID: 22222145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance.
    Kim KS; Jung KH; Park BG; Shin YE; Jung SB
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7620-4. PubMed ID: 24245303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical characteristics of printed Ag nanopaste on polyimide substrate.
    Lee YC; Kim KS; Kim JW; Kim JM; Nah W; Lee SH; Jung SB
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1468-71. PubMed ID: 21456214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of silver conductive circuits screen-printed on a polyimide substrate.
    Kim KS; Lee YC; Kim JW; Jung SB
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1493-8. PubMed ID: 21456220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics.
    Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambient Aqueous-Phase Synthesis of Copper Nanoparticles and Nanopastes with Low-Temperature Sintering and Ultra-High Bonding Abilities.
    Kamikoriyama Y; Imamura H; Muramatsu A; Kanie K
    Sci Rep; 2019 Jan; 9(1):899. PubMed ID: 30692589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.
    Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the flexibility of silver circuits screen-printed on polyimide with an environmental reliability test.
    Kim KS; Lee YC; Ahn JH; Jung SB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5806-11. PubMed ID: 22121611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Ag nanowire addition into nanoparticle paste on the conductivity of Ag patterns printed by gravure offset method.
    Ok KH; Lee CJ; Kwak MG; Choi DK; Kim KS; Jung SB; Kim JW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8808-12. PubMed ID: 25958608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.
    Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.