These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 25971001)

  • 1. AC impedance behaviors of electrochemically deposited Si-hydroxyapatite films on nanotube-formed Ti-Nb-Zr alloys.
    Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9014-9. PubMed ID: 25971001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.
    Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6124-8. PubMed ID: 26369211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Characteristics of Nano-Structured Silicon/Hydroxyapatite Deposition onto the Ti-Nb-Zr Alloy.
    Jeong YH; Kim JJ; Choe HC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1783-6. PubMed ID: 27433670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Characteristics of Cell Cultured Ti-Nb-Zr Alloys After Nano-Crystallized Si-HA Coating.
    Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):185-8. PubMed ID: 26328326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite precipitation on nanotube surfaces of Ti-35Ta-xNb alloys.
    Jo CI; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7581-4. PubMed ID: 25942829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese Coatings on Hydroxyapatite-Deposited Ti–29Nb–xHf Alloys After Nanomesh Formation.
    Park SY; Choe HH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2661-665. PubMed ID: 29664264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Characteristics of Nanotube Formed Ti–25Nb–xZr Alloys.
    Byeon IS; Choe HC
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2655-660. PubMed ID: 29664261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anodic Voltage Dependence of Ti-6Al-4V Substrates and Hydroxyapatite Coating.
    He DH; Wang P; Liu P; Liu XK; Chen XH; Li W; Zhang K
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5700-5706. PubMed ID: 30961727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys.
    Kim HJ; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8405-10. PubMed ID: 25958536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface characteristics of HA coating and micro-pore formation on the Ti-25Nb-xHf alloys for dental materials.
    Kim SH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7745-50. PubMed ID: 25942859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.
    Strąkowska P; Beutner R; Gnyba M; Zielinski A; Scharnweber D
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():624-635. PubMed ID: 26652416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Micro-Arc Oxidation Discharge Parameters on Formation and Biomedical Properties of Hydroxyapatite-Containing Flower-like Structure Coatings.
    Chen KT; Huang JW; Lin WT; Kuo TY; Chien CS; Chang CP; Lin YD
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.
    Zhang M; Cai S; Zhang F; Xu G; Wang F; Yu N; Wu X
    J Mater Sci Mater Med; 2017 Jun; 28(6):82. PubMed ID: 28424946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications.
    Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F
    Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys.
    Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZrO(2)/hydroxyapatite coating on titanium by electrolytic deposition.
    Hsu HC; Wu SC; Yang CH; Ho WF
    J Mater Sci Mater Med; 2009 Feb; 20(2):615-9. PubMed ID: 18853237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.
    Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE
    Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model.
    Bigi A; Fini M; Bracci B; Boanini E; Torricelli P; Giavaresi G; Aldini NN; Facchini A; Sbaiz F; Giardino R
    Biomaterials; 2008 Apr; 29(11):1730-6. PubMed ID: 18192001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.