These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25971031)

  • 1. Correlating defect density with growth time in continuous graphene films.
    Kang C; Jung DH; Nam JE; Lee JS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9169-73. PubMed ID: 25971031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.
    Liu L; Zhou H; Cheng R; Chen Y; Lin YC; Qu Y; Bai J; Ivanov IA; Liu G; Huang Y; Duan X
    J Mater Chem; 2012 Jan; 22(4):1498-1503. PubMed ID: 25414547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.
    Kang C; Jung DH; Lee JS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9098-103. PubMed ID: 26726650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions.
    Wu X; Zhong G; D'Arsié L; Sugime H; Esconjauregui S; Robertson AW; Robertson J
    Sci Rep; 2016 Feb; 6():21152. PubMed ID: 26883292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth mechanism of graphene on graphene films grown by chemical vapor deposition.
    Kang C; Jung DH; Lee JS
    Chem Asian J; 2015 Mar; 10(3):637-41. PubMed ID: 25655906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films.
    Thiele S; Reina A; Healey P; Kedzierski J; Wyatt P; Hsu PL; Keast C; Schaefer J; Kong J
    Nanotechnology; 2010 Jan; 21(1):015601. PubMed ID: 19946163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density.
    Hwang JY; Kuo CC; Chen LC; Chen KH
    Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.
    Das S; Drucker J
    Nanotechnology; 2017 Mar; 28(10):105601. PubMed ID: 28084218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.
    Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH
    Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of the effects of cooling conditions on high quality graphene growth by the APCVD method.
    Xiao K; Wu H; Lv H; Wu X; Qian H
    Nanoscale; 2013 Jun; 5(12):5524-9. PubMed ID: 23674269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extended growth of graphene oxide flakes using ethanol CVD.
    Huang J; Larisika M; Fam WH; He Q; Nimmo MA; Nowak C; Tok IY
    Nanoscale; 2013 Apr; 5(7):2945-51. PubMed ID: 23455030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of graphene: influence of synthesis variables.
    Lavin-Lopez MP; Valverde JL; Cuevas MC; Garrido A; Sanchez-Silva L; Martinez P; Romero-Izquierdo A
    Phys Chem Chem Phys; 2014 Feb; 16(7):2962-70. PubMed ID: 24390482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid Sn and Cu-Sn Alloy Substrates.
    Saeed MA; Kinloch IA; Derby B
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33126626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst.
    Bhaviripudi S; Jia X; Dresselhaus MS; Kong J
    Nano Lett; 2010 Oct; 10(10):4128-33. PubMed ID: 20812667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large single crystals of graphene on melted copper using chemical vapor deposition.
    Wu YA; Fan Y; Speller S; Creeth GL; Sadowski JT; He K; Robertson AW; Allen CS; Warner JH
    ACS Nano; 2012 Jun; 6(6):5010-7. PubMed ID: 22617012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.